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Abstract

Visualizing Regular Tessellations:
Principal Congruence Links

and
Equivariant Morphisms from Surfaces to 3-Manifolds

by

Matthias Rolf Dietrich Goerner

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Peter Teichner, Co-chair

Professor Ian Agol, Co-chair

We study embeddings of regular tessellations into S3 such that some symmetries of the
tessellation are directly visible in space. In the first chapter, we consider cusped hyperbolic
3-manifolds which arise from principal congruence subgroups and, therefore, are canonically
tessellated by regular ideal hyperbolic tetrahedra. The codimension of an embedding of such
a 3-manifold into S3 is zero, and the embedding fills all of S3 but a link, i.e., a disjoint union
of knots. A new example constructed here is the 12-component link whose complement
consists of 54 regular ideal hyperbolic tetrahedra. The link has 3-fold dihedral symmetry
making some of the symmetries of its hyperbolic complement directly visible in the picture.
In the second chapter, we embed surfaces F into 3-space. These surfaces are regular maps,
i.e., regular tessellations by polygons.

The main result of the first chapter is the construction of two new principal congruence
links. These links have hyperbolic complements arising from a natural number theoretic
construction to obtain regular covers of Bianchi orbifolds. The datum for the construction
of these arithmetic 3-manifolds is an ideal 〈z〉 in the ring of integers OD in the imaginary
quadratic number field Q(

√
D) of discriminant D < 0. Results by Vogtman [Vog85], Lack-

enby [Lac00], and Agol [Ago00] imply that there are only finitely many principal congruence
links. Here, we attempt to list all of the principal congruence links for the discriminant
D = −3. Previously, only two such principal congruence links due to Dunfield and Thurston
[DT03, Thu98] were known for the prime ideals generated by z = 2 and z = 2 + ζ. We show
that there are at most seven principal congruence links and explicitly construct two more
for the non-prime ideals z = 2 + 2ζ and z = 3. For the construction, we use that the deck
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transformation group of these Bianchi orbifold covers is a solvable extension to break down
the construction into a sequence of branched cyclic covers starting from a known principal
congruence orbifold diagram. Each cyclic cover can be obtained by either using Akbulut and
Kirby’s construction [AK80] or by unfolding the Euclidean (3,3,3)-triangle orbifold. The
chapter finishes with a discussion of generic regular covers of the Bianchi orbifold for O−3

by explicitly constructing the category of all such covers with small fixed cusp modulus.

The second chapter gives an algorithm to determine how much symmetry of a surface F can
be seen by mapping, immersing, or embedding F into Euclidean 3-space E3. Here, F is a
“regular map” as defined by, e.g., Coxeter [CM80] and is the generalization of the Platonic
solids to higher genus surfaces, the genus 0 regular maps being exactly the surfaces of the
Platonic solids. In this definition, the term “map” refers to a tessellation of a surface (as
in countries of a geographic map) and a “regular map” is a tessellation by p-gons such that
q of them meet at each vertex and fulfill an extra transitivity condition. Notice that any
automorphism of the surface of a Platonic solid regarded as regular map is also realized by
an isometry of the Platonic solid regarded as solid in E3. However, embeddings of most
higher-genus regular maps fail to make all symmetries directly visible in space. The Klein
quartic is a regular map of genus 3 tessellated by heptagons and an embedding of it into E3

is visualized by the sculpture “The Eightfold Way”. We cannot rotate the sculpture so that
one heptagon is rotated by a 1

7
th of a turn, even though this rotation is induced abstractly

by an automorphism of the Klein quartic. However, the symmetries of the tetrahedron
form a subgroup H of automorphisms that are visible in the sculpture. This gives rise to
the question what the best sculpture for a given regular map F is in terms of symmetries
directly made visible in space. We present algorithms to determine which subgroups H of the
automorphism group of a given regular map F are realized by an H-equivariant morphism,
immersion, or embedding into E3. We show the results for the census of regular maps by
Conder and Dobcsányi [CD01, Con09] up to genus 101.
To achieve this, we translate the question about the existence of an equivariant morphism
into the existence of morphisms between the quotient spaces of F and E3 by H with an extra
condition on the holonomy. These quotient spaces are orbifolds and the orbifold fundamental
group is a functor taking a morphism between orbifolds to a homomorphism between their
orbifold fundamental groups. Here, we reverse the process: given a group homomorphism,
is it coming from an orbifold morphism, immersion, or embedding from a 2-orbifold to
a 3-orbifold? We develop algorithms to decide this using orbifold handle decompositions,
extending normal surface theory, and applying the mapping class group.

Further connections intimately tie the two chapters together: For example, restricting the
canonical triangulation of a principal congruence manifold to a cusp induces a regular map
on the cusp torus, yielding an invariant we call cusp modulus. Furthermore, the 2-skeleton of
the canonical triangulation of a principal congruence manifold is an immersed regular map,
e.g., the Klein quartic in case of the complement of the Thurston congruence link [Ago].
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Chapter 1

Congruence Links

1.1 Introduction

LetOD be the ring of integers in the imaginary quadratic number field Q(
√
D) of discriminant

D with D < 0 and D ≡ 0, 1 (4). The group PGL(2,OD) ⊂ PGL(2,C) ∼= PSL(2,C) is a
discrete subgroup of the orientation-preserving isometry group of hyperbolic 3-space H3 and
contains the index 2 subgroup PSL(2,OD) which is called the Bianchi group. The quotient
space

MD
1 =

H3

PGL(2,OD)
respectively ND

1 =
H3

PSL(2,OD)

is a cusped hyperbolic 3-orbifold, called the Bianchi orbifold. Bianchi [Bia93, Bia92] (by
hand and over a century ago) and Riley [Ril83] (by computer) have computed the Ford
fundamental domains for the Bianchi orbifolds up to D = −95 and the orbifold diagrams
can be found in [Hat83a].

The Bianchi orbifolds are prototypical in the sense that every arithmetic cusped hyperbolic 3-
manifold is commensurable with a Bianchi orbifold MD

1 [MR03, Theorem 8.2.3]. For example,
M−3

1 is covered by the Figure 8 knot complement and its sister. M−4
1 is covered by the

complements of the Whitehead link and the Borromean rings.

The most straightforward way to construct arithmetic cusped hyperbolic 3-manifolds is by
specifying an ideal 〈z〉 with z ∈ OD and dividing H3 by the principal congruence subgroup
to obtain a regular cover of the Bianchi orbifold for OD:

MD
z =

H3

ker

(
PGL

(
2,OD

)
→ PGL

(
2, OD〈z〉

))
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respectively

ND
z =

H3

ker

(
PSL

(
2,OD

)
→ PSL

(
2, OD〈z〉

)) .
These groups are called principal congruence subgroups of level 〈z〉 because they are formed
by all matrices with coefficients in OD that are invertible (MD

z ), respectively, have deter-
minant one (ND

z ) and that are congruent to the identity modulo 〈z〉. We call the quotient
spaces MD

z and ND
z principal congruence manifold. The orientation-preserving symmetry

group is, up to a possible Z/2 extension, PSL(2,OD/〈z〉). Complex conjugation induces a
reflection symmetry if 〈z〉 = 〈z̄〉.

Principal congruence subgroups have been studied extensively for Z and OD yielding 2-,
respectively, 3-orbifolds and manifolds such as the Klein quartic for 7 ∈ Z (see Section 1.2.1)
and have connections to many other areas of mathematics such as Group Theory, Algebraic
Geometry, and Number Theory. Interesting examples included in this class are, e.g., the
complement N−3

2 of the minimally twisted 5-component chain link yielding almost all census
manifolds by Dehn fillings and the 4×5 chessboard complex M−3

2+2ζ studied in combinatorics

(see Section 1.2.2). In fact, the family MD
z even includes a manifold containing a geodesically

immersed Klein quartic such that all symmetries of the Klein quartic are induced by symme-
tries of the 3-manifold (M−3

2+ζ , see Section 1.2.1). Motivated by this relationship, Thurston

managed to find a link with complement M−3
2+ζ [Thu98]. To the best of my knowledge, the

Thurston congruence link for M−3
2+ζ and the minimally twisted 5-component chain link [DT03]

for N−3
2 (see Section 1.13.1 for proof) are the only two examples of principal congruence links

for D = −3 discovered so far (see Figure 1.4).

In more geometric terms, these two links are also examples of Bianchi orbifold regular cover
links for D = −3, i.e., they have the following special property: the link complement posses
a regular tessellation by regular ideal hyperbolic tetrahedra where regular means that the
symmetry group of the link complement can take any tetrahedra to any other tetrahedra in
all possible 12 rotations of the tetrahedron.

The two examples M−3
2+ζ and N−3

2 raise the question which of the manifolds MD
z or ND

z

can be expressed as link complements and how much symmetry of the manifold is visible
in the link. Cuspidal cohomology yields an obstruction to the Bianchi orbifold MD

1 being
covered by a link complement. Using work of Grunewald, Mendoza, Rohlfs, Schwermer, and
Zimmert [GS81, Men79, Roh85, Zim73], Vogtmann [Vog85] computes the rational cuspidal
cohomology of the Bianchi groups implying:

Theorem 1.1.1. If MD
1 can be covered by a link complement, then D ∈ L where

L = {−3,−4,−7,−8,−11,−15,−19,−20,−23,−24,−31,−39,−47,−71}.
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In particular, a principal congruence manifold MD
z can only be a link complement if D ∈ L.

Hatcher [Hat83b] describes the structure of some of the Bianchi orbifolds in more detail and
constructs link complements commensurable with them. Baker [Bak01] completes this work
by constructing a link whose complement covers MD

1 for each D ∈ L, thus turning Theorem
1.1.1 into “if and only if”. However, Baker’s links are not canonical and, in particular, the
complement is not a principal congruence manifold or even a regular cover.

Whereas cuspidal cohomology restricts the possible values of D, Gromov and Thurston’s
2π-Theorem [BH96] and later improvements by Agol [Ago00] and Lackenby [Lac00] restrict
the possible values of z. Their theorems imply that for z large enough, any Dehn filling on
MD
z respectively ND

z results in a hyperbolic manifold again. In particular, this implies that
MD
z and ND

z cannot be link complements for all but finitely many values of z.

Together, these results imply that there are only finitely many principal congruence links,
and, as shown in Section 1.7, at most seven potential principal congruence links for the case
of discriminant D = −3. As mentioned earlier, two of those are known. The main part of this
chapter is devoted to the construction of two more principal congruence links: M−3

3
∼= N−3

3

in Section 1.12 and M−3
2+2ζ
∼= N−3

2+2ζ in Section 1.13.

The chapter is structured as follows:

Section 1.2 describes the connection of the principal congruence manifolds M−3
2+ζ and M−3

2+2ζ

to the Klein Quartic and the 4× 5 chessboard complex.

The next sections review prerequisites for the construction of the new principal congruence
links: Section 1.3 proves some Lemmas about the groups PGL and PSL. It is fairly technical
and can be skipped since references to the results are made explicitly when needed. Section
1.4 describes the Bianchi orbifold M−3

1 . Section 1.5 defines the cusp modulus as invariant
of regular covers of Bianchi orbifolds. Section 1.7 lists all possible principal congruence
links for D = −3 and Section 1.8 introduces congruence manifolds and the notation used
later. Section 1.9 explains the orbifold diagram conventions and Section 1.10 details the
construction of cyclic branched covers.

The principal congruence orbifolds M−3
1+ζ and M−3

2 discussed in Section 1.11 serve as starting
point for the construction of the new principal congruence links.

The new principal congruence links are constructed in Section 1.12 and 1.13. Section 1.14
describes progress made on N−3

3+ζ .

After the construction, a discussion of generic regular covers of M−3
1 follows in Section 1.15.

To conclude, we discuss related and possible future work in Section 1.16
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1.2 Relationship to Other Spaces

1.2.1 Relationship to the Klein Quartic

Similarly to MD
z , the principal congruence subgroups of PSL(2,Z) yield Riemann surfaces

as quotients of H2. An intuitive and geometric description of the action of these principal
congruence subgroups on H2 is given in [Gra99]. Klein investigated these groups and, in
particular, showed that for z = 7, the resulting quotient

H2

ker (PSL (2,Z)→ PSL (2,Z/7))

is the punctured version of the algebraic curve in CP 2 that is given by the equation

xy3 + yz3 + zx3 = 0

and that is now called the Klein quartic [Lev99]. The Klein quartic is also an example of a
Hurwitz surface (see Section 2.2.2) and, hence, also a regular map (see Definition 2.2.1) of
type {3, 7}. The group of orientation-preserving symmetries is the unique simple group of
order 168: PSL(2,Z/7). The group PGL(2,Z/7) of all symmetries of the Klein quartic is
isomorphic to the symmetry group PGL(2,Z[ζ]/〈2+ ζ〉) of the chiral 3-manifold M−3

2+ζ where

ζ = eπi/3 = 1
2

+
√

3
2
i ∈ Z[ζ] = O−3. The groups are isomorphic because Z[ζ]/〈2 + ζ〉 ∼= Z/7

as the norm of 〈2 + ζ〉 is (2 + ζ)(2 + ζ̄) = 7. In fact, this group isomorphism is realized by
a geodesic immersion of the punctured Klein quartic into M−3

2+ζ , namely the Klein quartic
is formed by the faces of the 28 regular ideal hyperbolic tetrahedra forming the Thurston
congruence link complement [Ago].

1.2.2 Relationship to the 4× 5 Chessboard Complex

The chessboard complex has been defined and investigated in [Gar79], [Zie94], and [BLVŽ94].
The m × n chessboard complex is a simplicial complex consisting of a k-simplex for every
non-taking configuration of k rooks (“that is, no two rooks on the same row or column”
[Zie94]) on the m× n chessboard. A face of a k-simplex is identified with the k − 1-simplex
corresponding to the respective subset of k − 1 rooks.

The 2 × 3 chessboard complex is a 6-cycle. The 6-cycle is the link of a vertex in the 3 × 4
chessboard complex which is a torus with 24 triangles. This torus is the link of a vertex
in the 4 × 5 chessboard which has 120 tetrahedra. Since 6 tetrahedra meet at an edge in
a 6-cycle, the 4 × 5 chessboard complex can be given the structure of a cusped hyperbolic
3-manifold triangulated by regular ideal tetrahedra, as pointed out by David Eppstein [Epp].
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The symmetry group of this manifold acts transitively on all flags of the triangulation. This
means that the manifold is a regular cover of the Bianchi orbifold M−3

1 . The cusp modulus
(as defined in Section 1.5) of the chessboard complex is the 3 × 4 chessboard complex. Up
to multiplication by a unit, the only z ∈ Z[ζ] with norm N (z) = 24

2
is 2 + 2ζ. Using the

result on the category C2+2ζ of all Bianchi orbifold covers with this cusp modulus in Section
1.15.1, we have:

Theorem 1.2.1. The 4 × 5 chessboard complex is isometric to the principal congruence
manifold M−3

2+2ζ.

Section 1.13 constructs M−3
2+2ζ as link complement.

1.3 Properties of PGL and PSL

This section reviews and extends some well known properties of PGL and PSL and is rather
technical. This section can be skipped. Later sections explicitly make references to results
in this section when needed.

Section 1.3.1 discusses the structure of PGL(n,R/I) and PSL(n,R/I) for non-prime ideals
I.
Lemma 1.3.11 and Example 1.3.12 in Section 1.3.2 state when N−3

z is a double-cover of M−3
z .

Lemma 1.3.15 and 1.3.18 in Section 1.3.3 give the symmetry groups of the principal congru-
ence manifolds N−3

z and M−3
z .

1.3.1 PGL and PSL for Non-Prime Ideals

This section analyzes the structure of the groups GL, SL,PGL, and PSL for a non-prime
ideal I. Thus, this section can be used to compute the order of these groups by factoring an
arbitrary ideal and using Remark 1.3.7 for the base case where I is prime.

Let R be a principal ideal domain. Recall the Chinese Remainder Theorem (see [Hun80,
Chapter III, 2] or [Lan02, Chapter II, §2.]):

Theorem 1.3.1 (Chinese Remainder Theorem). Let Ij be pairwise coprime ideals in R.
Then

R∏k
j=1 Ij

∼=
R

I1

× · · · × R

Ik

where the isomorphism is given by the projection onto each factor R/
∏k

j=1 Ij → R/Ij.
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Given a product of rings A× B, the projections A× B → A and A× B → B induce maps
between M(n, ) and yield an isomorphism M(n,A × B) ∼= M(n,A) ×M(n,B). E.g., if A
and B are quotients of a principal ideal domain, we can find a unique matrix on the left given
two matrices on the right using the Chinese Remainder Theorem. In other words, M(n, )
is a product preserving functor.

Similarly, the units ( )× in the ring are given by(
R∏k
j=1 Ij

)×
∼=
(
R

I1

)×
× · · · ×

(
R

Ik

)×
. (1.1)

Lemma 1.3.2. Let Ij be pairwise coprime ideals in R. Then

GL

(
n,

R∏k
j=1 Ij

)
∼= GL

(
n,
R

I1

)
× · · · ×GL

(
n,
R

Ik

)

SL

(
n,

R∏k
j=1 Ij

)
∼= SL

(
n,
R

I1

)
× · · · × SL

(
n,
R

Ik

)
.

Proof. Notice that the determinant commutes with the projections M(n,A×B)→M(n,A),
M(n,A × B) → M(n,B). Hence, the above map between the GL is well-defined and an
isomorphism because of Equation 1.1.
Similarly, 1 goes to 1 in each factor in Equation 1.1, hence the second isomorphism follows.

For a unit r in a ring R, let n
√
rR× denote all units s such that sn = r. Recall that

PGL(n,R) ∼= GL(n,R)/R× and PSL(n,R) ∼= SL(n,R)/ n
√

1R× . Equation 1.1 also holds for
n
√

1R× implying:

Lemma 1.3.3. Let Ij be pairwise coprime ideals in R. Then

PGL

(
n,

R∏k
j=1 Ij

)
∼= PGL

(
n,
R

I1

)
× · · · × PGL

(
n,
R

Ik

)

PSL

(
n,

R∏k
j=1 Ij

)
∼= PSL

(
n,
R

I1

)
× · · · × PSL

(
n,
R

Ik

)
.

Lemma 1.3.4. Let I be a prime ideal in R and k ≥ 2. Then

ker

(
GL

(
n,

R

Ik+1

)
→ GL

(
n,
R

Ik

))
∼= M

(
n, R

I

) ∼=
(
R

I

)n2

ker

(
SL

(
n,

R

Ik+1

)
→ SL

(
n,
R

Ik

))
∼= ker

(
tr : M

(
n, R

I

)
→ R

I

) ∼= (R
I

)n2−1
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where we regard M(n,R) and R/I as additive groups.

Proof. Let z be the generator of I. The matrices in the first kernel are exactly those of the
form Id+zkA where A ∈M(n,R/I). Two such matrices multiply as (Id+zkA)(Id+zkB) =
Id + zk(A+B) + z2kAB ≡ Id + zk(A+B) (zk+1).
The matrices in the second kernel need to have tr(A) = 0.

Remark 1.3.5. The matrices in the above kernel are the identity modulo Ik and can be
regarded as the analogue of tangent vectors to the Lie group GL and SL at the identity in
the I-adic expansion. Hence, the lemma is the analogue to computing the Lie algebra in the
I-adic expansion.

Lemma 1.3.6. Let I be a prime ideal in R. Then

ker

(
PGL

(
n,

R

Ik+1

)
→ PGL

(
n,
R

Ik

))
∼=
(
R

I

)n2−1

.

Proof. Let z be the generator of the ideal I.

GL
(
n, R

Ik+1

)
��

// // PGL
(
n, R

Ik+1

)
��

GL
(
n, R

Ik

)
// // PGL

(
n, R

Ik

)
The ker

(
GL
(
n, R

Ik

)
→ PGL

(
n, R

Ik

))
is {rId} with r ∈

(
R
Ik

)×
. A preimage of such a matrix

in GL
(
n, R

Ik+1

)
is of the form rId + zkA with r ∈

(
R

Ik+1

)×
and A ∈ M(n,R/I). Notice that

det is a unit again automatically, and so is x = r + zkA11. Hence, x−1(rId + zkA) is the
same in PGL

(
n, R

Ik+1

)
as rId + zkA and is of the form Id + zkB with B ∈ M(n,R/I) and

B11 = 0. These elements Id + zkB form the kernel in the Lemma.

Remark 1.3.7. For I a prime ideal in R, we have∣∣∣∣GL

(
2,
R

I

)∣∣∣∣ = (N (I)2 − 1)(N (I)− 1)N (I)∣∣∣∣PGL

(
2,
R

I

)∣∣∣∣ =

∣∣∣∣ SL

(
2,
R

I

)∣∣∣∣ = (N (I)2 − 1)N (I)∣∣∣∣PSL

(
2,
R

I

)∣∣∣∣ =
1

2
(N (I)2 − 1)N (I) or (N (I)2 − 1)N (I)

where the factor 1
2

has to be dropped for PSL if 2|N (I).
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1.3.2 Relationship between M−3z and N−3z

Let R be a principal ideal domain. Let N (I) denote the norm of the ideal I, i.e., the order
of R/I.

Lemma 1.3.8. Let Ij be distinct prime ideals, then -1 has a square root in R∏k
j=1 I

mj
j

if and

only if -1 has a square root in each factor R

I
mj
j

.

Let I be a prime ideal with odd N (I), then -1 has a square root in R
Im

if and only if 4|(N (I)−
1).

Proof. The first statement of the Lemma follows from -1 projecting to -1 in each factor
under the isomorphism in the Chinese Remainder Theorem. We prove the other statement
by induction on m:
For m = 1, R

I
is isomorphic to the field of order N (I). Under the group isomorphism(

R
I

)× ∼= Z
N (I)−1

, −1 corresponds to
[
N (I)−1

2

]
, and, hence, −1 has a square root if and only if

4|(N(z)− 1).
If R/I does not have a square root of -1, then neither does R/Im because R/Im � R/I.
For the induction step, pick r ∈ R such that r2 ≡ −1 (Im). There exists r̄ ∈ Im such that
(r + r̄)2 ≡ r2 + 2rr̄ ≡ −1 (Im+1) because Im

Im+1 is a field. Hence, r + r̄ is a square root of -1
in R

Im+1 .

Example 1.3.9. Let R = Z[ζ] with ζ = eπi/3 be the Eisenstein integers. Consider the rings
R
〈z〉 . For z = 2, we obtain the finite field of order 4, so -1=1 has a square root. For z = 4,

and hence for z = 2k with k ≥ 2, one can check that −1 does not have a square root. Recall
that N (a+ bζ) = a2 + ab+ b2. Using the Lemma, we obtain Table 1.1.

Let S be a ring, typically, Z[ζ]
〈z〉 . The determinant map det : GL(n, S)→ S× descends to

det : PGL(n, S) ∼=
GL(n, S)

S×
→ S×

(S×)n
. (1.2)

Lemma 1.3.10. The bottom row of the following diagram is exact:

SL(2,S)√
1S×

� � //

∼=
��

GL(2,S)√
1S×

// // GL(2,S)
S×

∼=
��

PSL(2, S) �
� k // PGL(2, S) det // // S×

(S×)2
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Table 1.1: Existence of
√
−1 in Z[ζ]

〈z〉 .

z prime factors
√
−1 exists

1 + ζ - No
2 - Yes
2 + ζ - No
2 + 2ζ 2(1 + ζ) No
3 〈1 + ζ〉2 No
3 + ζ - Yes
3 + 2ζ - No
3 + 3ζ 〈1 + ζ〉3 No
4 22 No
4 + ζ 〈1 + ζ̄〉 〈2 + ζ̄〉 No
4 + 2ζ 2(2 + ζ) No
4 + 3ζ - Yes
4 + 4ζ 22(1 + ζ) No
5 - Yes
5 + ζ - No
5 + 2ζ (1 + ζ)(3 + ζ̄) No
5 + 3ζ 〈2 + ζ̄〉2 No
5 + 4ζ - Yes
5 + 5ζ 5(1 + ζ) No
6 〈2〉 〈1 + ζ〉2 No
6 + ζ - No
6 + 2ζ 2(3 + ζ) Yes
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Proof. The neutral element in GL(2, S)/S× has representatives

(
s 0
0 s

)
∈ GL(2, S) with

s ∈ S. Such a representative lifts to SL(2, S) only if s ∈
√

1S× , hence is zero in SL(2, S)/
√

1S× .
Hence, k is injective.
An element [M ] ∈ PGL(2, S) lifts to PSL(2, S) if and only if there is a representative
M ∈ GL(2, S) with detM = 1 ∈ S, i.e., [M ] ∈ ker(det).

Consider the principal congruence subgroups ker (pPGL) and ker (pPSL) yielding M−3
z and

N−3
z :

ker (pPSL) �
�

//
� _

i

��

PSL(2,Z[ζ])
� _

j

��

pPSL // PSL
(

2, Z[ζ]
〈z〉

)
� _

k
��

ker (pPGL) �
�

// PGL(2,Z[ζ])
pPGL // PGL

(
2, Z[ζ]
〈z〉

)
(1.3)

We have ker (pPSL) = j−1 (ker (pPGL)) or, as subgroup of PSL(2,C) ∼= PGL(2,C),

ker (pPSL) = PSL(2,Z[ζ]) ∩ ker (pPGL) .

Lemma 1.3.11. The index of the map i is at most two, i.e., N−3
z is isometric to M−3

z or a

double cover of M−3
z . The index is two if and only if −1 has a square root in S = Z[ζ]

〈z〉 .

Proof. The index of the inclusion j is two, therefore, the index of i is at most two.
The index of the map i is one if and only if

ker (pPGL) ⊂ Im(j) ∼= PSL(2,Z[ζ]).

Hence, the index is two if and only if there is a matrix M ∈ GL(2,Z[ζ]) with det(M) = −1
such that M is 1 in PGL(2, S). Such a matrix has det(pPGL(M)) = 1 ∈ S×

(S×)2
, so it is a

necessary condition that −1 is send to 1 in S×

(S×)2
.

This condition is sufficient: Assume there is s ∈ S with s2 = −1. Pick a representative

s′ ∈ Z[ζ] of s. We need to prove that there is a matrix M ∈ GL(2,Z[ζ]) that is

(
s 0
0 s

)
in

GL(2, S). Consider M =

(
s′ + za′ zb′

z s′

)
. We need to find a′, b′ ∈ Z[ζ] such that

det(M) = (s′)2 + s′za′ + z2b′ = −1. (1.4)

Because s2 = −1 ∈ S, Equation 1.4 is true modulo z. Since s′ has an inverse modulo z, we
can pick a′ such that the equation is fulfilled modulo z2. Hence, we can pick b′ such that the
equation is exact.
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Example 1.3.12. “Yes” entries in Example 1.3.9 are cases where N−3
z is a double cover of

M−3
z . The matrix M =

(
12 5
5 2

)
serves as an example of the proof for z = 5.

1.3.3 The Symmetry Group of M−3z and N−3z

Lemma 1.3.13. The map pPSL in the Commutative Diagram 1.3 is surjective.
The map pPGL has image det−1({±1}) with det as defined by Equation 1.2.

Proof. We can pick a representative M ∈ GL(2,Z[ζ]) with detM = ±1 for every element in
PGL(2,Z[ζ]), hence Im(pPGL) ⊂ det−1({±1}).
It is left to show that an element in PSL(2, S) respectively det−1({±1}) is in the image of pPSL

respectively pPGL. Pick a matrix M =

(
a b
c d

)
∈ GL(2, S) to represent such an element.

In case of PSL, we have detM = 1. In case of PGL, we can assume that detM = ±1,
because detM 7→ ±1 ∈ S×

(S×)2
and we can multiply M by a unit in S× without changing the

element in PGL(2, S) that M represents.
Recall that Z[ζ] is a Euclidean domain (see, e.g., [Hun80, Chapter III, Definition 3.8]) with

norm ρ(a + bζ) = a2 + ab + b2. This induces a function ρ : S = Z[ζ]
〈z〉 → N0 defined by ρ(s)

being the minimal ρ(s′) among all representatives s′ ∈ Z[ζ] of s ∈ S. The function ρ does
not turn S into a Euclidean domain, but still fulfills that, for a, b ∈ S \ 0 with ρ(b) ≤ ρ(a),
there exists k ∈ Z such that ρ(a − ζkb) < ρ(a). Hence, we can still perform the Euclidean
algorithm on S.
Perform the Euclidean algorithm on the pair (a, b). Apply the same steps to (c, d). This
means that we can think of the Euclidean algorithm as performing column operations on

M , i.e., multiplying M by elementary matrices

(
1 ζk

0 1

)
and

(
1 0
ζk 1

)
. At the end of

the Euclidean algorithm, M is of the form

(
0 b
c d

)
or

(
a 0
c d

)
. By multiplication with

the counter-diagonal matrix

(
0 1
−1 0

)
, we can exclude the first form. By multiplication

with the elementary matrix

(
1 0

−a−1c 1

)
, we can bring the matrix into the form M0 =(

a 0
0 d

)
∈ GL(2, S) with ad = 1 respectively ad = ±1.

Pick s′, t′ ∈ Z[ζ] such that they map to a, d ∈ S. Similarly to the proof of Lemma 1.3.11, we

can find a′, b′ ∈ Z[ζ] such that

(
s′ + za′ zb′

z t′

)
∈ GL(2,Z[ζ]) goes to M0.

Notice that the elementary matrices and the counter-diagonal matrix lift to SL(2,Z[ζ]) as
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well. Hence, M has a preimage under pPGL respectively pPSL.

Remark 1.3.14. The surjectivity of pPSL for prime ideals is also shown in [MR03, Lemma
6.5.6] using Hensel’s Lemma (see, e.g., [Eis95, Theorem 7.18]).

Lemma 1.3.15. Let M be a regular manifold cover of M−3
1 . Then Isom+(M) is isomorphic

to the group of deck transformations of M → M−3
1 . Hence, Isom+(M−3

z ) ∼= det−1({±1}) ⊂
PGL

(
2, Z[ζ]
〈z〉

)
where det as defined by Equation 1.2.

Proof. Every deck transformation of M → M−3
1 induces an orientation-preserving symmetry.

If M = M−3
z , the holonomy of this covering space is given by πorb1 (M−3

1 ) ∼= PGL(2,Z[ζ]) �
Im (pPGL) = det−1({±1}) using Lemma 1.3.13.
We need to exclude that there are “hidden symmetries“, i.e., orientation-preserving symme-
tries ofM not induced by a deck transformation. Notice that the canonical cell decomposition
of M (see, e.g., [EP88]) is the triangulation by regular ideal hyperbolic tetrahedra induced
from M−3

1 . Hence, every orientation-preserving isometry of M comes from mapping some
tetrahedra to some other tetrahedra with a choice of 12 possible orientations, i.e., from a
deck transformation of M → M−3

1 .

The orbifold diagrams for the orbifold cases M−3
1 , M−3

1+ζ and M−3
2 are shown in Section 1.11

and reveal that there are no hidden symmetries.

Remark 1.3.16. This also follows from the theorem in [Mey86] which states that M−3
1 is

the minimal volume cusped orientable hyperbolic 3-orbifold.

Remark 1.3.17. If M is a generic cover of M−3
1 , the argument fails. For example, M =

M−3
3+ζ (P ) (also discussed in Section 1.14; see Section 1.8 for notation) with P =

{(
1 x
0 1

)}
has an orientation-preserving symmetry that exchanges the two cusps and, hence, is not a
deck transformation of M → M−3

1 . This symmetry will take one triangulation by regular
ideal tetrahedra to a distinct triangulation by regular ideal tetrahedra.

Lemma 1.3.18. If N−3
z 6∼= M−3

z (i.e., if -1 has no square root in S = Z[ζ]/〈z〉), then

Isom+(N−3
z ) ∼=

Z
2
× Isom+(M−3

z ) ∼=
Z
2
× PSL

(
2,

Z[ζ]

〈z〉

)
.

Proof. Recall that N−3
z is a regular cover of both M−3

1 and its double-cover N−3
1 .

Therefore, the symmetries of N−3
z are induced from the action of PGL(2,Z[ζ]) on H3 by

Lemma 1.3.15, let m be the map PGL(2,Z[ζ])→ Isom+(N−3
z ).

The deck transformations of N−3
z → N−3

1 are PSL
(

2, Z[ζ]
〈z〉

)
by Lemma 1.3.13 and form a

subgroup of Isom+(N−3
z ), call the inclusion l. The index of Im(l) in Isom+(N−3

z ) is two
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because N−3
z is a double-cover of M−3

z by Lemma 1.3.11. Hence we obtain the following
commutative diagram:

x′, z′ ∈ PSL(2,Z[ζ])
pPSL // //

� _

j

��

PSL
(

2, Z[ζ]
〈z〉

)
� o

l

  

z = Mj(x′)M−1 ∈ PGL(2,Z[ζ])

m

++ ++

x ∈ Isom+(N−3
z )

(1.5)

Because Z[ζ]
〈z〉 has a square root of -1 by Lemma 1.3.11, the map k from Lemma 1.3.10 gives

an isomorphism onto the image of pPGL. Hence Commutative Diagram 1.3 becomes:

PSL(2,Z[ζ])
pPSL // //

� _

j

��

PSL
(

2, Z[ζ]
〈z〉

)
k ∼=
��

PGL(2,Z[ζ])
pPGL // // det−1({±1})

(1.6)

A matrix y ∈ PGL(2,Z[ζ]) has det y ∈ Z[ζ]×

(Z[ζ]×)2
. If det y = +1, then it lifts to PSL(2,Z[ζ])

and induces a deck transformation of N−3
z → N−3

1 . If det y = −1, y induces the non-trivial
symmetry of N−3

1 and m(y) 6∈ Im(l).
The matrix M ∈ PGL(2,Z[ζ]) in the proof Lemma 1.3.11 is an example of the case detM =
−1 such that pPGL(M) = 1. Let i : Z/2 ↪→ Isom+(N−3

z ) map 1 to m(M). Then l is a splitting
of the following central extension:

Z
2
� � i // Isom+(N−3

z ) // // PSL
(

2, Z[ζ]
〈z〉

)
∼= Isom+(M−3

z )

l

{{

It is left to show that N−3
z is a central extension, i.e., that m(M) commutes with an element

x ∈ Im(l).
Lift x to x′ ∈ PSL(2,Z[ζ]). Let z = Mj(x′)M−1. Pick the unique z′ ∈ PSL(2,Z[ζ]) with
j(z′) = z. Commutative Diagram 1.6 implies

pPSL(z′) = k−1(pPGL(j(z′))) = k−1(pPGL(z)) = k−1(pPGL(Mj(x′)M−1))

= k−1(pPGL(M)pPGL(j(x′))pPGL(M)−1) = k−1(pPGL(j(x′)))

= pPSL(x′)

l(pPSL(z′)) = l(pPSL(x′)) = x.
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Since Diagram 1.5 commutes, we have

l(pPSL(z′)) = m(j(z′))

= m(z) = m(Mj(x′)M−1) = m(M)m(j(x′))m(M)−1

= m(M)xm(M)−1.

Therefore x = m(M)xm(M)−1.

Remark 1.3.19. This proof is rather subtle. The two Commutative Diagrams 1.5 and 1.6 do
not commute together. For example, take an element M ∈ PGL(2,Z[ζ]) with detM = −1.
Then m(M) 6= l(k−1(pPGL(M))).

1.4 The Bianchi Orbifold for D = −3

6
3

3

4
4

3

3

3

3

3

3
3

M−31 M−41

N−31 N−41

Figure 1.1: Bianchi orbifolds for D = −3 and −4.

Let ζ = eπi/3 = 1
2

+
√

3
2
i such that O−3 = Z[ζ] are the Eisenstein integers. The group

PGL(2,O−3) is the orientation-preserving subgroup of a Coxeter reflection group [MR03,
Section 9.1] (as is PGL(2,O−4), see Figure 1.1). In other words, M−3

1 is obtained by dividing
H3 by the orientation-preserving symmetries of the tessellation H3 by regular ideal tetrahe-
dra. 12 copies of a fundamental domain of M−3

1 form one such regular ideal tetrahedron. The
cusp respectively vertices of the singular locus correspond to the ideal vertex respectively
the edge-center, face-center, and center of the regular ideal tetrahedron.
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1.5 Cusp Modulus

Let M ∼= H3

Γ
be a regular cover of M−3

1 . If M is a manifold, it inherits a triangulation by
regular ideal hyperbolic tetrahedra. Intersecting this triangulation with a horosphere about
an ideal vertex of a tetrahedron induces a triangulation of the cusp torus by equilateral
Euclidean triangles that is regular.

This triangulation lifts to a triangulation of the universal cover of the torus (compare to
classification of genus 1 regular maps in Section 2.2.2). The vertices of this triangulation can
be associated with the lattice Z[ζ] ⊂ C, and the torus can be obtained by dividing Z[ζ] ⊂ C
by an ideal 〈z〉 in Z[ζ]. We refer to the triangulation of the torus respectively the generator
z ∈ Z[ζ] as cusp modulus of M . Because M is a regular cover, the cusp modulus is the same
for every cusp, hence an invariant of M .

The number of vertices, edges, and triangles in the triangulation of a cusp with cusp modulus
z is given by

v = N (z) , e = 3N (z) , f = 2N (z)

where N (z) is the norm of the ideal 〈z〉 given by

N (z) =

∣∣∣∣Z[ζ]

〈z〉

∣∣∣∣ = a2 + ab+ b2 with z = a+ bi.

In other words, look at the elements

[(
1 x
0 1

)]
∈ Γ ⊂ PGL(2,C) fixing ∞. These cor-

respond to the translations of the above lattice Z[ζ] that give the torus as quotient. The
group of all x ∈ Z[ζ] occurring this way is an ideal 〈z〉 in Z[ζ] because Γ is invariant under

conjugation by

(
ζ 0
0 1

)
. The generator z ∈ Z[ζ] is again the cusp modulus.

Figure 1.2 shows a fundamental domain of a triangulation of a torus forming the link of an
ideal vertex for the cusp modulus z = 2 + ζ.

If M is an orbifold, the regular cover structure makes the cusp an interval × a regular cover
of the Euclidean (2,3,6)-triangle orbifold. This regular cover of the (2,3,6)-triangle orbifold
is again encoding the “cusp modulus” (this time z and some rotations of C such that the

quotient is an orbifold) and can be recovered by looking at the elements

[(
ζk x
0 1

)]
∈ Γ ⊂

PGL(2,C) which act as z 7→ ζkz+x on C. Notice that these torsion elements with k 6≡ 0(6)
make the topology of a cusp an interval × a sphere.

The maximally embedded horocusp neighborhood of M−3
1 corresponds to a horoball above

the horosphere with height 1 in the upper half plane model. This induces an embedded
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Figure 1.2: Cusp modulus z = 2 + ζ.

horocusp neighborhood C on a regular cover M . Hence, the length of a geodesic peripheral
curve in ∂C is the same as the one obtained from the natural Euclidean metric on the torus
C/〈z〉.

In Section 1.15.1, we discuss universal Bianchi orbifold covers defined by cusp modulus being
the only relation.

1.6 Bound on the Cusp Modulus for a Link Comple-

ment

The goal of this section is to prove Corollary 1.6.2 stating that a principal congruence link
for discriminant D = −3 has cusp modulus |z| < 6.

Let M be a cusped orientable hyperbolic 3-manifold with an embedded horocusp neigh-
borhood C. Pick a closed curve γi in each connected component of ∂C such that γi is
geodesic with respect to the Euclidean metric on ∂C. Gromov and Thurston’s 2π-Theorem
(see [BH96] for proof) says that the manifold M(γ1, . . . , γn) obtained by Dehn filling M
along the γi again admits a hyperbolic metric if the length of each γi is > 2π. Agol [Ago00,
Theorem 6.2] and Lackenby [Lac00, Theorem 3.1] improve this bound to > 6 (using the
Geometrization Theorem).

Lemma 1.6.1. If the length of each γi is ≥ 6, the cores of the Dehn fillings have infinite
order in π1(M(γ1, . . . , γn)).

Proof. This lemma is the first step in the proofs of [Ago00, Theorem 6.2] and [Lac00, The-
orem 3.1] and both proofs still hold when replacing > 6 by ≥ 6:
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Both proofs start assuming there exists a map of a disk into M(γ1, . . . , γn) such that the
boundary becomes a multiple of a core. Both papers show that such a disk can be turned into
a pleated surface S (in [Ago00]) respectively F (in [Lac00]) in M \ C with boundary being
a collection of γi. We might need to replace C with a slightly smaller horocusp, retaining
the property that the length of γi is > 6− ε where we can pick any ε > 0. The proofs then
continue to derive an inequality for the area of the surface that results in a contradiction.
To make this part of the proofs work, we have to modify the inequalities as follows. For the
proof of Theorem 3.1 in [Lac00]:

2π(|F ∩ ∂M |− 2) = Area(F − ∂F ) ≥ |F ∩ ∂M |(π/3) min Length(si) > (2π− επ/3)|F ∩ ∂M |.

For the proof of Theorem 6.2 in [Ago00]:

6(n− 2) = 6|χ(S)| ≥ (n− 1) · lC(α) > (6− ε)(n− 1).

Corollary 1.6.2. If the manifold M is a regular cover of the Bianchi orbifold M−3
1 with cusp

modulus |z| >= 6, e.g., M−3
z or N−3

z , then M cannot be a link complement.

Proof. Pick embedded horocusp neighborhood in M as described in 1.5. Assume M is a
link complement. Let γi be the meridians of M ⊂ S3. Then Dehn filling along them yields
M(γ1, . . . , γn) ∼= S3. Pick geodesics in ∂C homotopic to γi. By the remark in Section 1.5, the
length of these geodesics is at least |z|. By Gromov, Thurston, Agol, and Lackenby’s results,
M(γ1, . . . , γn) is hyperbolic or has at least infinite fundamental group. A contradiction.

1.7 Principal Congruence Links

Multiplying z with ζk does not change the ideal 〈z〉. Complex conjugation only changes the
orientation of M−3

z respectively N−3
z . Hence, from now on we assume that z is of the form

z = a+ bζ with a ≥ b ≥ 0. The space M−3
z is amphicheiral if and only if z ∈ {1, 1 + ζ} · N.

Recall that [M ] ∈ PGL(2,C) is parabolic if and only if tr M
±
√

det M
∈ (−2, 2). Hence the

principal congruence subgroup is torsion-free and the quotient M−3
z a manifold except for

|z| ≤ 2. The orbifold cases are covered in Section 1.11.

A computer program generated the triangulations for the manifold cases with |z| < 6 as
input for SnapPy [CDW]. Table 1.2 shows the homologies of these manifolds. If H1 has
torsion or Betti number larger than the number of cusps, the manifold cannot be a link
complement. Together with Corollary 1.6.2, this yields:
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Theorem 1.7.1. If N−3
z is a link complement, then

z ∈ {2, 2 + ζ, 2 + 2ζ, 3, 3 + ζ, 3 + 2ζ, 5 + ζ}.

If M−3
z is a link complement, then M−3

z
∼= N−3

z .

Figure 1.3 gives an overview of the z for which we know whether N−3
z is a link complement

or not. The corresponding links or orbifold diagrams are shown in Figure 1.4. The link for
N−3

3 is constructed in Section 1.12 and for N−3
2+2ζ in Section 1.13. Section 1.13.1 also contains

a proof that the complement of the minimally twisted 5-component chain link is N−3
2 .

Remark 1.7.2. The table in Example 1.3.9 lists when N−3
z 6∼= M−3

z .

Remark 1.7.3. The difference between 2π and 6 rules out the cases z = 4+3ζ and z = 5+2ζ.

Table 1.2: Homologies of principal congruence manifolds M−3
z and N−3

z (when M−3
z 6∼= N−3

z ).
SnapPy [CDW] crashes for larger z.

M−3
z N−3

z

z Tetrahedra cusps H1(M−3
z ) H1(N−3

z )

2 + ζ 28 8 Z8

2 + 2ζ 120 20 Z20

3 54 12 Z12

3 + ζ 91 14 Z14 ⊕ Z/2 Z28

3 + 2ζ 570 60 Z60

3 + 3ζ 1458 108 Z126

4 160 20 Z20 ⊕ Z/4
4 + ζ 336 32 Z32 ⊕ Z/2

4 + 2ζ 1680 120 Z120 ⊕ (Z/2)8

4 + 3ζ 2109 114 Z114 ⊕ Z/2 ?
4 + 4ζ 1920 80 Z125 ⊕ (Z/2)3

5 650 52 Z52 ⊕ (Z/2)14 Z117

5 + ζ 2480 160 Z160

6 3240 180 ?
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Figure 1.4: Known principal congruence orbifold diagrams and links for D = −3.
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1.8 Congruence Orbifolds and Manifolds

We will construct congruence links through a sequence of covering spaces. We describe the

intermediate covering spaces by subgroups G of PGL
(

2, Z[ζ]
〈z〉

)
as follows: Let p denote the

natural map PGL(2,Z[ζ]) → PGL
(

2, Z[ζ]
〈z〉

)
. Let ∆(z) = ker(p). Now associate to G the

orbifold M−3
z (G) defined by

H3

p−1(G) G
�

M−3
z ( )

oo

p−1 (G) //
� _

��

G� _

��

PGL(2,Z[ζ]) p
// PGL

(
2, Z[ζ]
〈z〉

)
Notice that G ⊂ PGL(2,Z[ζ]/〈z〉) can be identified with a subgroup of deck transformations

of M−3
z . We have M−3

z (G) ∼= M−3
z

G
. The space M−3

z (G) is called congruence orbifold respec-
tively congruence manifold. If the discriminant D and the ideal 〈z〉 are clear from context,
we abbreviate it by [G].

The functor [ ] is a category equivalence between subgroups of Im (p) and intermediate
covering spaces between M−3

z and the Bianchi orbifold M−3
1 . The functor maps an inclusion

G ⊂ H to a cover [G] → [H] whose holonomy πorb1 ([H]) ∼= p−1 (H) → SH/G is given by the
action on the cosets H/G. In particular, it maps

• a normal subgroup G ⊂ H to a regular cover [G]→ [H] whose holonomy πorb1 ([H])→
p−1 (H)→ H/G is given by the action on the quotient group H/G.

• a p-cyclic extension G ↪→ H → Z/p to a p-cyclic cover.

Analogous constructions can be done for PSL.

Remark 1.8.1. It is still an open question whether there are infinitely many congruence
links. Let

P =

{
Px = ±

(
1 x
0 1

)}
.

Consider the congruence orbifolds respectively manifolds [P ] and N−3
z (P ). When the horo-

cusp from M−3
1 is lifted to these covering spaces, there is one cusp with cusp modulus 1,
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Table 1.3: Homologies of the congruence manifolds M−3
z (P ).

z Tetrahedra cusps H1 Complement of Link

3 + ζ 7 2 Z/2⊕ Z2 No (but in RP 3)
3 + 2ζ 30 6 Z6 Yes
3 + 3ζ 54 10 Z10 Yes

4 10 5 Z5 Yes
4 + ζ 16 4 Z/2⊕ Z4 No (but in RP 3)

4 + 2ζ 60 12 Z12 Yes
4 + 3ζ 57 6 Z/2⊕ Z6 No
4 + 4ζ 40 10 Z10 Yes

5 26 4 (Z/2)2 ⊕ Z4 No
5 + ζ 80 10 Z10 Yes

5 + 2ζ 56 8 Z/2⊕ Z8 No
6 90 16 Z16 Yes

hence the argument in Corollary 1.6.2 does not work, even if |z| > 6.
Table 1.3 lists the homologies for these spaces for small z and whether we could find Dehn
fillings trivializing π1 in SnapPy [CDW].

1.9 Orbifold Diagram Conventions

Dunbar [Dun88, Introduction] and Ratcliffe [Rat94, Chapter 13] summarize the definitions
of orbifolds, respectively, the fundamental group of an orbifold, here denoted by πorb1 (M).
For a hyperbolic 3-manifold M ∼= H3

Γ
, the orbifold fundamental group πorb1 is isomorphic to

Γ. A definition is also given in Section 2.3.3. We write X(M) for the underlying topological
space and Σ(M) for the singular locus of an orbifold M . Here, we regard only oriented
3-orbifolds, hence X(M) is an oriented 3-manifold and Σ(M) a trivalent graph embedded
in X(M). Near Σ(M), the orbifold is modeled on a quotient of R3 by a finite subgroup Γ
of SO(3,R). The edges of the graph carry labels n indicating that Γ is a cyclic group Cn
and the orbifold chart near that edge is an n-cyclic branched cover of R3. Near a vertex of
Σ(M), the group Γ is the orientation-preserving subgroup of a spherical triangle group (that
is a Coxeter group with three generators), i.e., either a dihedral group Dn or the orientation-
preserving symmetry group of a Platonic solid.
An orbifold can have cusps that are ends modeled on either T 2×(0, 1) or S2×(0, 1) containing
some edges of ΣM modeled on lines p× (0, 1).
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Figure 1.5 shows the conventions used here for orbifold diagrams that are projections of
S3 = R3 ∪ {∞} and that can contain cusps, singular locus, and Dehn surgeries. Notice
that surgery coefficients always carry a sign to distinguish them from labels of edges of the
singular locus. If a line segment of a diagram can only be part of the singular locus and does
not carry a label, the order is implied to be 2. A knot carrying no label is denoting a cusp.

23

5

3

3

5

3

3

+3

5

Cusp
(remove knot)

Edge of singular graph
(modeled on branched cover)

Vertex of singular graph
(modeled on orientation-preserving trian-
gle group)

Cusp of orbifold
(remove a small ball of underlying topo-
logical manifold)

S1 ⊂ S3 consisting of ∞ and line perpen-
dicular to paper plane

Surgery on knot

n right-handed full (360◦) twists

strands marked with arrow do not
participate in twist but go under-
neath

Figure 1.5: Conventions for orbifold diagrams.
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1.10 Construction of Cyclic Branched Covers

We follow the construction of p-cyclic branched covers by Akbulut and Kirby [AK80].
Whereas [AK80] constructs covers of B4 branched over a Seifert surface, we are only in-
terested here in what happens on the 3-manifold boundary.

Since we need to lift the embedded singular graph, surgeries, and cusps of the orbifold
diagram to the branched cover, we review the construction in [AK80] to give an explicit
description of the diagram for the branched cover together with fundamental domains.

We start with an orbifold diagram O in S3 and an oriented Seifert surface F ⊂ S3 that is
bounded by a link serving as branching locus for the p-fold branched cover Õ → O.

We take a handle decomposition of the Seifert surface F having only one 0-handle D. The
0-handle is drawn as half-disk with the 1-handles being drawn above D and attached to the
straight top edge of D. See Figure 1.6.

First, thicken the Seifert surface F in S3. Split the thickened Seifert surface F × I ⊂ S3 into
p − 1 layers F × I1, . . . , F × Ip−1 where Ij are subintervals forming the interval I. Each of
these layers F × Ij together with the complement S3 \ (F × I) will form one fundamental
domain of the branched cover. The boundaries of these fundamental domains will be the
preimages of F . To match the topology of the layers F×Ij with the complement S3\(F×I),
surgeries on each F × Ij are necessary. To finish the process, divide out the fibers of ∂F × I.
They will collapse to the branching locus.

For each layer F × Ij, we now construct the surgeries: Move the cores of the 1-handles of F
into the center F × p of the layer (p ∈ Ij). Take a copy of these cores and flip them along
the top edge of D×p into D× Ij. Connect the cores and their flipped copies to obtain a link
in F × Ij. The surgery coefficient for each component γ of the link is twice the number of
twists of the corresponding 1-handle. Here, the 1-handle is said to have 0 twists if it lies in
a Seifert surface for γ. “Thus the left handed trefoil knot in Figure 1.6 gives −3 full twists
to that 1-handle; hence the -6 framing in the [...] cover” [AK80].

Remark: If the Seifert surface is bounded by a a/b surgery component of the link, then p
has to divide a and the surgery becomes a/(bp).
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Thickened Seifert surface 3-cyclic 4-cyclic

Figure 1.6: Examples of constructing cyclic branched covers according to Akbulut and
Kirby [AK80].



26

1.11 The Orbifold Cases for D = −3

Here, we describe the orbifolds M−3
1+ζ and M−3

2 . The Bianchi orbifold M−3
1 was already

discussed in Section 1.4 with Figure 1.1 showing the orbifold diagram.

The subgroup of elements [(
ζk x
0 1

)]
∈ ker(p)

fixing ∞ is generated by translations and the torsion elements(
ζ2 0
0 1

)
for z = 1 + ζ and

(
−1 0
0 1

)
for z = 2.

As described in Section 1.5, the topology of the cusps of M−3
1+ζ
∼= N−3

1+ζ and M−3
2 is an interval

× sphere. As an orbifold, such a cusp is an interval × an orbifold O covering the (2, 3, 6)-
triangle group. In the two cases z = 1 + ζ and z = 2, the orbifold O can be triangulated
by equilateral Euclidean triangles such that singular points are the vertices. Hence, the
orbifolds M−3

1+ζ and M−3
2 are triangulated by regular ideal hyperbolic tetrahedra with the

singular locus formed by the edges.

For M−3
1+ζ , the cusp structure O is the (3,3,3)-triangle orbifold divided into two Euclidean

equilateral triangles belonging to the two tetrahedra meeting at a cusp. For M−3
2 , the tri-

angulation of the O is the boundary of a tetrahedron with each vertex being an order two
cone point. We can construct triangulations by gluing tetrahedra such as to enforce these
cusp structures and obtain the universal regular cover with fixed cusp structure (see Section
1.15.1 with the torsion elements as additional generators). These triangulations have two,
respectively, five regular ideal tetrahedra and topologically form punctured S3. The latter
triangulation is also the boundary of a 4-simplex. The orbifold diagrams for M−3

1+ζ and M−3
2

are shown in Figure 1.4. The latter diagram is called the Pentacle and is taken from [DT03].

To check that the orbifolds we constructed are indeed M−3
1+ζ and M−3

2 , we can compute

their degrees as orbifold covers of M−3
1 : the group of the deck transformations of M−3

1+ζ is
PGL(2,Z[ζ]/〈1 + ζ〉) and its order is 24 = 2 · 12. Similarly PGL(2,Z[ζ]/〈2〉) has order
60 = 5 · 12.



27

1.12 Construction of M−3
3

The manifold M−3
3 has a triangulation consisting of 54 regular ideal hyperbolic tetrahedra

such that 18 form one of 12 cusps of the manifold.

Theorem 1.12.1. The complement of the top link in Figure 1.7 is M−3
3 .

Proof. We will construct the link in five steps through the covering spaces M̃I
1+ζ , M̃II

1+ζ , M̃III
1+ζ ,

and M̃IV
1+ζ of the orbifold M−3

1+ζ as shown in Figure 1.7. At each step, we will show that the

covering space is an Abelian cover of M−3
1+ζ . By lemma 1.12.2, the manifold M−3

3 must be a

3-cyclic cover of M̃IV
1+ζ . There is a unique 3-cyclic cover of M̃IV

1+ζ such that the sizes of the

cusp matches with those of M−3
3 . Hence this unique 3-cyclic cover has to be M−3

3 .

Notice that ∆(3) (see Section 1.8) is a normal subgroup of ∆(1+ζ), hence the manifold M−3
3

is a regular cover of M−3
1+ζ with holonomy given by

πorb1

(
M−3

1+ζ

)
� G :=

∆(1 + ζ)

∆(3)
∼= ker

(
PGL

(
2,

Z[ζ]

〈3〉

)
→ PGL

(
2,

Z[ζ]

〈1 + ζ〉

))
.

The orbifold diagram for M−3
1+ζ is shown in Figure 1.7 and serves as starting point for the

construction of a link for M−3
3 . The group G is (Z/3)3 by Lemma 1.3.6.

Lemma 1.12.2. The manifold M−3
3 is the universal Abelian cover of M−3

1+ζ.

Proof. The complement of the singular locus X(M−3
1+ζ)\Σ(M−3

1+ζ) is a genus 3 handlebody. We

can pick three loops around Σ(M−3
1+ζ) generating its fundamental group and becoming order

3 elements under the map π1(X(M−3
1+ζ)\Σ(M−3

1+ζ))→ πorb1 (M−3
1+ζ). Hence, the Abelianization

πorb1 (M−3
1+ζ)

ab is a quotient of
(Z

3

)3
and G being Abelian is a quotient of πorb1 (M−3

1+ζ)
ab. So

πorb1

(
M−3

1+ζ

) ∼= G.

This suggests that M−3
3 can be obtained by consecutively constructing three cyclic branched

covers. However, after two such steps motivated by the elimination of singular locus, the
remaining singular locus in M̃II

1+ζ is too complicated to proceed directly. If we divide the
diagram by the C3 symmetry, we can use previous techniques again and undo the division
by constructing an appropriate cover in the last step.
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Figure 1.7: Abelian covers of the Bianchi orbifold for O−3 involved in the construction of
M−3

3 . Each arrow is a 3-cyclic cover.
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M̃I
1+ζ
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Figure 1.8: Construction of M̃I
1+ζ .

1.12.1 Construction of M̃I
1+ζ

The construction of the 3-cyclic cover M̃I
1+ζ → M−3

1+ζ is shown in Figure 1.8. Pick four edges

of the singular locus of M−3
1+ζ that form an unknot spanning a disk. For the projection of

M−3
1+ζ shown on the left in Figure 1.8, this disk is shown in [Thu86, Figure 3.3]. Here, we use

the projection shown on the right in Figure 1.8 and pick the four outer edges.
This disk serves as a Seifert surface for constructing the 3-cyclic cover according to Akbulut
and Kirby [AK80]. In other words, cut S3 along this disk to obtain a ball B3 and glue three
copies of B3 together. The four edges of the singular locus become regular and disappear in
the branched cover.

Notice that the deck transformations of M̃I
1+ζ act by cyclic permutations of the edges of each

connected components of the singular locus.
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Figure 1.9: Construction of M̃II
1+ζ .

1.12.2 Construction of M̃II
1+ζ

The construction of the 3-cyclic cover M̃II
1+ζ → M̃I

1+ζ is shown in Figure 1.9. Ignoring one of

the connected components of the singular locus, the orbifold M̃I
1+ζ is the product O× (0, 1)

where O is the Euclidean 2-orbifold (3, 3, 3) with underlying topological space X(O) = S2.

The middle picture in Figure 1.9 shows a projection of M̃I
1+ζ with two cusps being at infinity,

thus revealing the structure of O and showing how the other connected component of the
singular locus embeds. The right picture displays a fundamental domain of O. The 3-cyclic
cover of O is a torus T 2 and its fundamental domain appears in the picture above. We
project the fundamental domain onto the torus T 2 in the Hopf link complement T 2 × (0, 1).

The left picture shows a different projection of M̃II
1+ζ .

Lemma 1.12.3. The covering space M̃II
1+ζ → M−3

1+ζ is Abelian.
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Proof. More generally, let A→ B → C be a sequence of consecutive Abelian covering spaces.
The orbifold fundamental group πorb1 (C) acts on B by deck transformations, hence it acts
on the Abelianization of the orbifold fundamental group πorb1 (B)ab. The cover A → C is
Abelian if and only if the holonomy πorb1 (B) → H corresponding to the cover A → B stays
invariant under this action.

For M̃I
1+ζ , look at the small loops winding once around an edge of a fixed component of

the singular locus in the same orientation. The holonomy of M̃II
1+ζ → M̃I

1+ζ is uniquely
determined by sending each such loop to 1 ∈ Z/3 and other generators to zero. The deck

transformations of M̃I
1+ζ → M−3

1+ζ leave this holonomy invariant.

Look at the top right hexagon in Figure 1.9 which becomes the torus T 2. The deck transfor-
mation group of M̃II

1+ζ → M−3
1+ζ is the direct sum of deck transformations of M̃I

1+ζ → M−3
1+ζ

and deck transformations of M̃II
1+ζ → M̃I

1+ζ . The first acts by rotating T 2 by 2/3π about a
vertex of the singular locus. The second acts by rotating T 2 by 2/3π about the center of the
hexagon. Together, they form a translation of T 2 as deck transformation.

The deck transformation group is
(Z

3

)2
.

1.12.3 Construction of M̃III
1+ζ

Dividing M̃II
1+ζ by the C3 symmetry displayed in Figure 1.7 yields the orbifold M̃III

1+ζ . This
C3 symmetry corresponds to deck transformations by translations of T 2 as described in
the previous Section. These deck transformations have to form a normal subgroup since
M̃II

1+ζ → M−3
1+ζ is Abelian. Hence, the cover M̃III

1+ζ → M−3
1+ζ is 3-cyclic.

Recall that there is another subgroup of deck transformations of M̃II
1+ζ → M−3

1+ζ generated
by a rotation of T 2 by 2/3π about a vertex of the singular locus. This subgroup commutes

with C3 and descends to the deck transformations of M̃III
1+ζ → M−3

1+ζ . On M̃III
1+ζ , these deck

transformations act by 3-cyclically permuting the edges of the singular graph.

1.12.4 Construction of M̃IV
1+ζ

The construction of the 3-cyclic cover M̃IV
1+ζ → M̃III

1+ζ is shown in Figure 1.10 and follows
the same idea of unfolding the Euclidean orbifold O in Section 1.12.2 for the 3-cyclic cover
M̃II

1+ζ → M̃I
1+ζ . The top right picture in Figure 1.10 shows a projection of M̃IV

1+ζ revealing
the torus T 2 inside the Hopf link complement that is formed by the components bl and br.
The top left picture in Figure 1.10 shows a projection of the same link revealing the Seifert
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surface that is bounded by the components al, ac, and ar and that is needed in the next step
of the construction. Figure 1.11 illustrates the isotopy between the two projections of M̃IV

1+ζ .

By the same argument as used in Lemma 1.12.3, the cover M̃IV
1+ζ → M−3

1+ζ is Abelian.

333

3 3

333
3

3

333

al

ac

ar

bl

bc

br

al

ac
ar

bl

bc

br

'

'

'

M̃III
1+ζ

M̃IV
1+ζ

'

Figure 1.10: Construction of M̃IV
1+ζ .
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Figure 1.11: Different projections of M̃IV
1+ζ arranged counter-clockwise starting from bottom

right. The last two projections are homeomorphic to the one revealing the Seifert surface.
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1.12.5 Construction of M−33

Determination of the Seifert surface

To construct the last 3-cyclic branched cover M−3
3 → M̃IV

1+ζ , we need to determine the

right holonomy π1

(
M̃IV

1+ζ

)
→ Z/3 and then find a suitable Seifert surface in M̃IV

1+ζ for the

construction of the cyclic cover according to Akbulut and Kirby [AK80]. Notice that the

holonomy factors through H1

(
M̃IV

1+ζ

)
which is generated by meridians.

We trace the number of tetrahedra that meet at each cusp when triangulating the orbifolds
by regular ideal tetrahedra. For example, this number is 2 for the cusps in M−3

1+ζ and 6 for

M̃I
1+ζ . For M̃IV

1+ζ , this number is 6 for the cusps al, ac, and ar, and 18 for the cusps bl, bc, and
br (see Figure 1.10). Hence the link components al, ac, and ar have to serve as branching
locus for the cyclic cover. Each of the other cusps bl, bc, and br has to lift to three copies
in the covering space, hence their meridians and longitudes are zero under the holonomy

H1

(
M̃IV

1+ζ

)
→ Z/3. This determines the holonomy uniquely. A Seifert surface realizing that

holonomy is shown in Figure 1.10, as can be easily checked by noticing that each bl, bc, and
br intersects the surface a multiple of 3 times.

Construction of the Cyclic Cover

Figure 1.12 shows the construction of the 3-cyclic cover according to Akbulut and Kirby
[AK80] and as described in Section 1.10. The components bl, bc, and br are drawn to lie
just in front of the Seifert surface with small circles around the branched locus such that
their lifts to the branched cover are easier to visualize.

We perform Rolfsen twists (see [Rol90, Chapter 9.H] or [GS99, Chapter 5.3]) and blow-downs
(see [GS99, Chapter 5.1]) to eliminate the surgeries. Figure 1.13 shows the results of the first
Rolfsen twists about al respectively ar. Figure 1.14 shows the result of the blow-downs about
each of the unknots with +1 surgery coefficient. The resulting link is shown in its entirety
in Figure 1.15. A projection revealing the D6 symmetry of the link is shown in Figure 1.7.
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+2

+2 +2+2

M̃IV
1+ζ

M−33

Figure 1.12: Construction of 3-cyclic branched cover M−3
3 → M̃IV

1+ζ . The resulting link

diagram of M−3
3 has four +2 surgeries.
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+2 +2

1

+1 +1

Figure 1.13: Rolfsen twist on the link for M−3
3 about al respectively ar resulting in +1

surgeries.

+1 +1

Figure 1.14: Blow-downs on the link for M−3
3 about the +1 surgery unknots eliminating

the surgeries.
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Figure 1.15: The link for M−3
3 .
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1.13 Construction of M−3
2+2ζ

The manifold M−3
2+2ζ has a triangulation consisting of 120 regular ideal hyperbolic tetrahedra

such that 24 form one of 20 cusps of the manifold.

Theorem 1.13.1. The complements of the link in RP 3 in Figure 1.26 respectively in S3 in
Figure 1.27 are M−3

2+2ζ.

Proof. Following the notation in Section 1.8, we will construct the links through a sequence
of cyclic covers starting with [A4 × 1] as shown in Figure 1.16. We will prove the correctness
of each step in a way that can be checked by hand.

Recall the following identities [CM80]:

• A4
∼= PSL(2, 3) ∼= PSL(2,Z[ζ]/〈1 + ζ〉)

• S4
∼= PGL(2, 3) ∼= PGL(2,Z[ζ]/〈1 + ζ〉)

• A5
∼= PSL(2, 4) ∼= SL(2, 4) ∼= PGL(2, 4) ∼= PGL(2,Z[ζ]/〈2〉)

• S5
∼= PGL(2, 5)

Using Lemma 1.3.3 and 1.3.15, notice that the symmetry group of M−3
2+2ζ factors as

PGL

(
2,

Z[ζ]

〈2 + 2ζ〉

)
∼= PGL

(
2,

Z[ζ]

〈1 + ζ〉

)
× PGL

(
2,

Z[ζ]

〈2〉

)
∼= S4 × A5.

We already have orbifold diagrams for (notation [G] as defined in Section 1.8)

M−3
2
∼= [S4 × 1] and M−3

1+ζ
∼= [1× A5] .

Since A5 is not solvable, M−3
2+2ζ cannot be constructed as series of cyclic covers of M−3

1+ζ . How-

ever, the group S4 is solvable, hence we start our construction of a link for M−3
2+2ζ with M−3

2 .
Recall that a solution of S4 is given by [S4, S4] = A4 and [A4, A4] = 〈(12)(34), (13)(24)〉 ∼=
(Z/2)2 which is Abelian, namely the Klein four group.
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3
3

3

3

3

3

6
3

3

-5

-3

-3

-2
+3

-2

-1

-3
-3

-3
-3

M−31
∼=
[
PGL

(
2, Z[ζ]

2+2ζ

)]
∼= [S4 × A5]

[A4 × Z/5]M−32
∼= [S4 × 1] M−31+ζ

∼= [1× A5]

M−32+2ζ
∼= [0]

N−32
∼= [A4 × 1] [

(Z/2)2 × Z/5
]

[Z/2× Z/5]

S4
A5

Z
2 ⊕ A5

Z
3

Z
2

Z
10

Z
2

S4 A5

Z
5

Figure 1.16: Covers of the Bianchi orbifold for O−3 involved in the construction of M−3
2+2ζ .

An arrow indicates a regular cover if and only if it is labeled by the group of deck transfor-
mations.
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Lemma 1.13.2. Let M be a 3-manifold with r cusps such that the free part of

H1(M) ∼= Zr ×
(
Z
p

)k
× non-p torsion

is generated by peripheral curves of the cusps. Then connected p-cyclic covering spaces with rp

cusps are in 1-1 correspondence to maps
(

Z
p

)k
→ Z

p
up to isomorphisms of Z

p
. In particular,

such a covering space is unique if k = 1. If p is prime, there are pk−1
p−1

such covering spaces.

Proof. The holonomy π1(M) → Z
p

factors through H1(M). Since each cusp has to lift to p
copies, the free part is sent to zero.

1.13.1 Construction of [A4 × 1] ∼= N−32

The orbifold M−3
2 is the pentacle as described in [DT03] and shown in Figure 1.16. A

triangulation of M−3
2 by regular ideal tetrahedra is given by the boundary of a 4-simplex.

Each edge is singular locus of order 2.

Lemma 1.13.3. The quotient [A4 × 1] is a manifold.

Proof. By definition

[A4 × 1] ∼= [[S4;S4]× 1] ∼=
H3

Γ

where

Γ =
[
p−1 (S4 × 1) , p−1 (S4 × 1)

]
= [∆(2),∆(2)] = ker

(
PSL (2,Z[ζ])→ PSL

(
2,

Z[ζ]

〈2〉

))
.

The group Γ misses the involution

(
1 0
0 −1

)
that caused the singular locus of the pentacle

[S4 × 1] ∼= M−3
2 . Furthermore Γ is normal in PGL(2,Z[ζ]), hence all singular locus of the

pentacle will disappear and [A4 × 1] is a manifold.

Lemma 1.13.4. M−3
2 has a unique manifold double cover.

Proof. Small loops γ winding once around an edge of the singular locus of M−3
2 generate

πorb1

(
M−3

2

)
. Each γ has to go to 1 under the holonomy πorb1

(
M−3

2

)
→ Z/2 to obtain a

manifold, determining the holonomy completely.
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The unique manifold double cover of M−3
2
∼= [S4 × 1] is N−3

2 and the complement of the
minimally twisted 5-component chain link as described in [DT03]. The involution of the link
acts by a rotation around the dashed circle in Figure 1.17. A fundamental domain for the
quotient of the link complement under the involution is the ball whose equator is the dashed
circle. Cut away the outside of the ball and blow it up to get S3 identifying the top and
bottom of the ball. The tori of the 5-component chain link become elongated balls. When
removing them, the circle splits into 10 line segments. When shrinking the balls so that they
become the cusps of the pentacle [S4 × 1], these line segments become the order 2 singular
locus.

-5 -5

-1

'

Z/5

[A4 × 1]

[A4 × Z/5]

'

Figure 1.17: Construction of
[
A4 × Z

5

]
.

1.13.2 Construction of [A4 × Z/5]

A blow-up [GS99, Chapter 5.1] of the diagram for the minimally-twisted 5-component chain
link makes the C5 symmetry visible, see top of Figure 1.17. We divide by this C5 symmetry
which is turning the −1-surgery into a −5-surgery, see Figure 1.17.

The resulting manifold has to be [A4 × Z/5] because the action of C5 on the manifold [A4 × 1]
is unique up to conjugation. In other words, the orientation-preserving symmetry group of
[A4 × 1] is Z/2× A5 and has only one conjugacy class of order 5.

The manifold [A4 × Z/5] is isometric to m003, the sister of the Figure 8 knot complement.
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-3
-3

-3

-5

-3

-3
-3

-3

-3
-3'

Z/3
[(Z

2

)2 × Z
5

]

[
A4 × Z

5

]
Figure 1.18: Construction of

[(Z
2

)2 × Z
5

]
.

1.13.3 Construction of
[
(Z/2)2 × Z/5

]

The manifold M−3
2+2ζ is a 60-fold cover of [A4 × Z/5]. The manifold M−3

2+2ζ has 20 cusps,
whereas [A4 × Z/5] has only one. The manifold [A4 × Z/5] has eight tetrahedra meeting at
a cusp ([A4 × 1] being the double cover of M−3

2 ). The manifold M−3
2+2ζ has 24 tetrahedra

meeting at a cusp. This means that the 3-cyclic cover
[
(Z/2)2 × Z/5

]
→ [A4 × Z/5] has

to triple the size of the cusp, hence the corresponding component of the link has to serve
as branching locus. Each of the following p-cyclic covers in the construction has to lift the
cusps to p copies.

Notice that H1 ([A4 × Z/5]) ∼= Z⊕Z/5 (the two components of the link have linking number
zero). Hence, the 3-cyclic cover is unique.

Figure 1.18 illustrates the construction of the 3-cyclic cover as described in Section 1.10.
Notice that each of −5 surgeries becomes a −3 surgery. To see this, blow-up about the clasp
of the −5 surgery component in the diagram for [A4 × Z/5] to unlink the components, undo
the blow-ups by three blow-downs in the 3-cyclic cover.
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-3

-3

-3

-2

+3/2

-2

-2-2

+3 -2

+3 -2

-1

-1

'

Z/2

[(Z
2

)2 × Z
5

]

'

[Z
2 ×

Z
5

]

Figure 1.19: Construction of
[Z

2
× Z

5

]
.

1.13.4 Construction of [Z/2× Z/5]

Pick one surgery component of the link for
[
(Z/2)2 × Z/5

]
to perform a Rolfsen twist with

n = 1 about (see bottom of Figure 1.19), then construct the 2-cyclic cover with one of
the −2-surgery components as branching locus (see top of Figure 1.19). Different choices
result in three covers that are different as covering spaces but not as manifolds. Since
H1 ([(Z/2)2 × Z/5]) ∼= Z ⊕ (Z/2)2 ⊕ Z/5, these are all possible 2-cyclic covers by Lemma
1.13.2.
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1.13.5 Construction of M−32+2ζ

Representing [Z/2× Z/5] as Link Complement in the Lens Space L(20, 11)

Without the cusps, the diagram for [Z/2× Z/5] in Figure 1.19 is a plumbing diagram. After
a blow-down about the −1 surgery, it is a linear plumbing diagram with coefficients -2, +4,
-2. Following [Rol90, Section 9.H] or [GS99, Section 5.3], the resulting space is a lens space
L(20, 11) ∼= L(20,−9) whose type is determined by the continued fraction

−20

9
= −2− 1

+4− 1
−2

.

The moves on the plumbing diagram revealing the lens space structure are shown in Figure
1.20. Figure 1.21, 1.22, 1.23, 1.24, and 1.25 trace the other components of the link diagram
for [Z/2× Z/5] through the moves on the plumbing diagram.

Construction of the 10-Cyclic Cover in RP 3

The components of the link in Figure 1.25 corresponding to cusps wind 10 times around the
+20/11-surgery unknot. Hence, H1 ([Z/2× Z/5]) ∼= Z ⊕ Z ⊕ Z/10 and the 10-cyclic cover
is uniquely determined by Lemma 1.13.2. During the construction of the 10-cyclic cover,
the +20/11-surgery unknot serves as branching locus and turns into +2/11 surgery, hence
we obtain a link for M−3

2+2ζ in L(2, 11) ∼= L(2,−1) ∼= RP 3. Figure 1.26 shows this link after
simplification by a Rolfsen twist with n = −6 about the +2/11 surgery unknot. Each of the
20 components is an unknot parallel to a meridian around the surgery unknot. The link has
at least D20-symmetry.

When drawing Figure 1.26, it is helpful to compute the slopes (number of meridians divided
by number of longitudes around the surgery unknot) of the resulting curves after the con-
struction of the cyclic cover and the Rolfsen twists. The surgery slope is +20/11, the slopes
of the straight lines in Figure 1.25 are +1/1 and +9/5. The 10-cyclic cover will turn those
into +2/11, +1/10, and +9/50. The n = −6 Rolfsen twists will result in -2/1, +1/4, and
-9/4.

Link Diagram in S3

Pick one of the link components, say γ, in the link diagram from Figure 1.26. Perform a
Rolfsen twist about γ. The seven components that are linked to γ get twisted and unlinked
from the surgery unknot. The surgery unknot turns to −1. Hence, a blow-down about this
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surgery unknot results in a link diagram for M−3
2+2ζ in S3 shown in Figure 1.27, unfortunately

breaking the D20 symmetry.

-2 +1

-1-1 -1 -2

-2

-1

+3

-3
-1

-2-2 -3

+3/2

-1-1 -1 -2

+9/2 -2 +9/11 -1 +20/11

1
-2

2

3

4

5 6 7

-1

-2

-1

+1

Figure 1.20: Moves on the Plumbing Diagram for
[Z

2
× Z

5

]
. In this Figure, we ignore the

other link components. However, we trace a small line segment for some of the moves to
guide the construction of Figure 1.22.
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-2

-1

+3

-2

-2

-1

+3

-2

Figure 1.21: Two different projections of Plumbing Diagram 1 from Figure 1.20 with cusps
for
[Z

2
× Z

5

]
.
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+3/2 -2-1+1 -1 -1

+3/2 -2-1+1 -1

-1

Figure 1.22: Two different projections of Plumbing Diagram 4 from Figure 1.20 with cusps
for
[Z

2
× Z

5

]
.
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-1

-1

-1

-2

+3/2

Figure 1.23: Plumbing Diagram 4 from Figure 1.20 with cusps for
[Z

2
× Z

5

]
projected onto

torus sitting in the Hopf link formed by the −2 and +3/2 surgery unknots.
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-2

+9/2

Figure 1.24: Plumbing Diagram 5 from Figure 1.20 with cusps for
[Z

2
× Z

5

]
projected onto

torus sitting in the Hopf link formed by the −2 and +9/2 surgery unknots.
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+20/11

Figure 1.25: Plumbing Diagram 7 from Figure 1.20 with cusps for
[Z

2
× Z

5

]
.
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-2

Figure 1.26: Link for M−3
2+2ζ in RP 3.
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+1 +1

Figure 1.27: Link for M−3
2+2ζ in S3.
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1.14 Attempt to Construct N−3
3+ζ

For 3+ζ, a SnapPy [CDW] computation shows that a suitable Dehn filling of N−3
3+ζ trivializes

the fundamental group. Hence, by Perelman’s Theorem, N−3
3+ζ is a link complement. The

manifold M−3
3+ζ (P ) (notation defined in 1.8) with

P =

{(
1 x
0 1

)}
is shown in Figure 1.28. The manifold M−3

3+ζ (P ) has 14 13-cyclic covers, but only two of

those have 14 cusps, each of the two is isometric to M−3
3+ζ which is the complement of a 14-

component link in RP 3. The double-cover of RP 3 yields a 28-component link in S3 whose
complement is N−3

3+ζ .

The manifold N−3
3+ζ (P ) is the complement of a 4-component link in S3. Analogously, the two

of those 13-cyclic covers with 28 cusps are isometric to N−3
3+ζ .

+14/3

Figure 1.28: Surgery diagram for M−3
3+ζ (P ).
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1.15 Generic Regular Covers of Bianchi Orbifolds

1.15.1 Category of Regular Covers of the Bianchi Orbifold with
Fixed Cusp Modulus

Let Cz be the category with objects being pointed, connected regular covering spaces of
the Bianchi orbifold M−3

1 with toroidal cusp modulus z (see Section 1.5). Morphisms are
topological morphisms commuting with the projections onto M−3

1 . Note that we obtain
the same category if we drop the condition on a topological morphism to commute and let
morphisms instead be covering maps, regular covering maps, or hyperbolic morphisms by
Lemma 1.3.15. Clearly, M−3

z and N−3
z are objects in this category. Let

∆̂(z) = normal subgroup of PGL(2,Z[ζ]) generated by Pz = ±
(

1 z
0 1

)
.

The quotient N̂−3
z = H3

∆̂(z)
is the initial object in Cz because, if H3

Γ
is an object in Cz, the group

Γ is normal in PGL(2,Z[ζ]) by definition and the cusp modulus implies that Pz ∈ Γ.

An algorithmic attempt to construct a triangulation of N̂−3
z is given in Table 1.4. This

algorithm terminates within reasonable time in the cases indicated in Table 1.5.

Given N̂−3
z , we can find all objects in Cz by looking for normal subgroups of Isom+(N̂−3

z )
containing no non-trivial element fixing a cusp. SnapPy [CDW] can represent the symmetry
group by its action on the cusps. If this action is faithful (e.g., the involution of the minimally
twisted 5-component chain link does not permute the cusps, see Section 1.13.1), this gives a
permutation representation which can be used in gap [GAP08].

This allows us to compute Cz (up to category equivalence) for small z (degree of covering
map is 2 unless indicated otherwise):

Cz =
{

N−3
z

}
for z ∈ {2, 2 + ζ, 2 + 2ζ, 3, 3 + 2ζ}

C3+ζ =
{

M−3
3+ζ ← N−3

3+ζ

}
C4 =

{
N−3

4 ← Ñ−3
4 ← N̂−3

4

}
C4+ζ =

{
M−3

4+ζ

(
(Z/2)2

) 4←− N−3
4+ζ ← Ñ−3

4+ζ

}
where Ñ−3

z is defined as

Ñ−3
z =

H3

ker
(

PSL(2,Z[ζ])→ SL(2,Z[ζ]/〈z〉)
±Id

) .
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Table 1.4: An algorithm attempting to construct the universal triangulation with fixed
cusped modulus.

1. Start with a single regular ideal hyperbolic tetrahedron.

2. While there are tetrahedra with open faces:

(a) Add a regular ideal tetrahedron and glue it to an open face. The open face is
chosen to be a face participating in a cusp that already has a lot of tetrahedra,
i.e., finishing one cusp first is preferred over moving on to the next.

(b) For each cusp, enforce the right cusp modulus by identifying appropriate tetrahe-
dra.

By working with right-handed flags instead of tetrahedra to encode a triangulation, this
algorithm also works if N̂−3

z is an orbifold.

Table 1.5: Homologies of universal Binachi orbifold covers N̂−3
z .

z Tetrahedra cusps H1

2

isometric to N−3
z

2 + ζ
2 + 2ζ

3
3 + ζ

3 + 2ζ
4 640 80 Z80

4 + ζ 672 64 Z64
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Notice that M−3
z ← N−3

z ← Ñ−3
z ← N̂−3

z where maps are covering maps or isomorphisms and

N̂−3
z might not be finite volume. Lemma 1.3.11 gives a complete answer to when the first

map is a double cover, also see Example 1.3.12.

The initial objects in C4 and C4+ζ are homology link complements, even though the other

objects in those categories are not, e.g., H1(Ñ−3
4 ) = Z40 ⊕ Z/2.

1.15.2 Another Universal Property

Theorem 1.15.1. For any finite volume (not necessarily regular) cover N of the Bianchi

orbifold M−3
1 , there exists z such that N̂−3

z covers N .

Proof. Even though N is not a regular cover, there are still natural coordinates on the
cusps as discussed in Section 1.5. The natural coordinates are defined up to ζk. N posses a
triangulation (not necessarily the canonical triangulation) by regular ideal tetrahedra coming
from the covering map N → M−3

1 . In the natural coordinates, the edges of this triangulation
intersect a cusp torus in the lattice Z[ζ]. Let µi and λi be the translations induced by two
peripheral curves generating the homology of the i-th cusp.

Notice µi and λi span Q[ζ] as a Q-vector space. Hence, there are ai, bi, ci ∈ Z such that
aiµi + biλi = ciζµi 6= 0. Notice that, for each k, aiciζ

kµi is a Z-linear combination of µi and
λi. Let z =

∏
aiciµi, then 〈z〉 ⊂ Zµi + Zλi for every i.

Let Γ ⊂ PGL(2,Z[ζ]) such that N = H3

Γ
. We need to show that Γ ⊃ ∆̂z. As a group, ∆̂z

is generated by matrices MPzM
−1 with M ∈ PGL(2,Z[ζ]). Hence, it suffices to prove that

every MPzM
−1 is in Γ. By conjugation of Γ with M , we can reduce to the case Pz which

fixes ∞ ∈ ∂H3.

By choice of z, it is a linear combination of µi and λi for the cusp at ∞. The corresponding
translation is an element of Γ, thus Pz ∈ Γ.

Remark 1.15.2. Using [MR03, Theorem 8.2.3], this theorem implies that every arithmetic

cusped hyperbolic 3-manifold is covered by some, not necessarily finite volume, N̂−3
z .
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1.16 Discussion and Future Work

We have made substantial progress in classifying all principal congruence links of discriminant
D = −3. We have shown that there are at most seven principal congruence links where we
regard two links as equivalent if they have the same link complement.1 We have found two of
these principal congruence links explicitly. Together with the two examples due to Dunfield
and Thurston [DT03, Thu98], there are three cases left of potential prinicipal congruence
links that need to be found. For one case, we have shown that the prinicipal congruence link
exists.

There are several ways of extending this work:

• Bianchi orbifold regular cover links. Classify generic regular covers of a Bianchi
orbifold with a given cusp modulus as defined in Section 1.5 and determine which
ones are link complements. The universal regular Bianchi orbifold cover with a given
cusp modulus (as defined in Section 1.15.1) appears to be infinite for large enough
cusp modulus. Hence, there might be infinitely many regular covers with given cusp
modulus z. If this happens for a cusp modulus |z| < 6, there might even be an infinite
class of Bianchi orbifold regular cover links. The exact bound when the universal
regular Bianchi orbifold cover becomes infinite and the existence of an infinite family
of Bianchi orbifold regular cover links are interesting open questions.

• Other discriminants. Classify the finitely many principal congruence links for dis-
criminants D 6= −3 (see introduction in Section 1.1). Similarly to D = −3, the group
PGL(2,O−4) is again a Coxeter group, this time related to the octahedron (also, see
next paragraph).

• Other regular ideal polyhedra. We can look at regular tessellations of cusped man-
ifolds by other regular ideal polytopes, i.e., quotients by finite index normal subgroups
of Coxeter groups. Aitchison and Rubinstein [AR92] list all possible polytopes, respec-
tively, Coxeter groups and construct a link for each case such that the link complement
is tessellated by these polytopes. However, their tessellations are not regular.

Polytope Coxeter group
Tetrahedron {3, 3, 6}
Octahedron {3, 4, 4}

Cube {4, 3, 6}
Dodecahedron {5, 3, 6}

1Unlike knots, links are not determined by their complement and all links representing the same manifold
can be obtained through Kirby calculus
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We modified the algorithm in Table 1.4 to use these polytopes. For, e.g., the octahe-
dron, the algorithm terminates for z ∈ {1, 1 + i, 2, 2 + i, 2 + 2i, 3, 3 + i, 3 + 2i}.

The following questions are related to this work and possible future work:

• Is a given hyperbolic manifold M a link complement? M is a link complement
if and only if there are Dehn fillings resulting in S3. In theory, the 3-sphere recognition
is algorithmic [Mat07]. Even though there might be infinitely many Dehn fillings
resulting in S3, Gordon [Gor02] lists a finite (though intractable) set of slopes sufficient
for recognizing link complements of a certain class.

• What is the maximal symmetry of a link with complement being a given
hyperbolic manifold M? The symmetry group Sym(M) can be computed effectively
through the canonical triangulation in SnapPy [CDW]. Sym(M) acts on the cusps and
their peripheral curves. A subgroup H ⊂ Sym(M) can be seen in the link if the
Dehn fillings resulting in S3 are invariant under H. If an element h ∈ H fixes a cusp,
then h cannot change the peripheral curves on the cusp other than by flipping their
orientations. To determine all possible H, we can find all H (up to conjugation in
Sym(M)) fulfilling this condition and search for H-invariant Dehn fillings resulting in
S3.

• Is M a congruence manifold? Given a hyperbolic manifold M , can we effectively
detect whether there is a z ∈ OD and a subgroup G ⊂ PGL(2,OD/〈z〉) such that M is
isometric to the congruence manifold MD

z (G) = H3/p−1(G) as defined in Section 1.8?

• What chain links are arithmetic? Neumann and Reid completely classify all arith-
metic chain links [NR92, Theorem 5.1]. All arithmetic chain links with discriminant
D = −3 are C(1,−3), C(1, 2), C(4,−4), C(4, 0), and C(5,−2). Among those, only the
minimally twisted 5-component chain link C(5,−2) is a principal congruence link.
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Chapter 2

Equivariant Morphisms from Regular
Maps to S3

2.1 Introduction

This chapter generalizes the idea behind the sculpture of the Klein quartic by Helaman
Ferguson at the Mathematical Science Research Institute in Berkeley, see Figure 2.1. The
center piece of the sculpture is a genus 3 handlebody obtained by taking the edges of a
tetrahedron and thickening them. There is a pattern of edges and vertices on the surface of
the sculpture dividing the surface into 24 heptagons. Each of the 56 vertices is surrounded
by three heptagons. Any rotational symmetry of the tetrahedron can be applied to the
sculpture and leaves the pattern invariant meaning that the image of a vertex or edge under
this symmetry is again a vertex or edge of the pattern.

This pattern is an example of a regular map. Here, “map” refers to a tessellation of a
surface, similar to a geographic map with countries. In fact, several regular maps have been
found while studying the four-color problem [CM80]. A regular map is a tessellation of a
surface by p-gons such that q of them meet at each vertex and such that an extra transitivity
condition holds: any p-gon can be taken to any other p-gon in all possible p rotations by an
automorphism of the tessellation. We say that such a regular map is of type {p, q}. Here,
an automorphism of the tessellation is a surface homeomorphism taking the tessellation to
itself, i.e., a bicontinuous 1-1 function from the surface to itself that takes vertices to vertices,
edges to edges, p-gons to p-gons. As such, regular maps are the generalization of the Platonic
solids to higher genus surfaces, the genus 0 regular maps being exactly the surfaces of the
five Platonic solids. The transitivity condition simply says that a person living in the surface
cannot tell through intrinsic measurements what p-gon he or she is in and at what edge of



60

Figure 2.1: Sculpture “The Eightfold Way” by Helaman Ferguson.

the p-gon he or she is looking at. The Klein quartic is a regular map of type {7, 3} (or {3, 7}
depending on convention) and genus 3 which has many connections to other areas of math
and which reoccurs in this thesis in Section 1.2.1 and 2.2.2.

As explained earlier, every rotational symmetry of Ferguson’s sculpture induces an auto-
morphism of the Klein quartic. In other words, some symmetries of the Klein quartic are
“directly visible as symmetries of space” (William Thurston [Lev99]). However, there are
symmetries of the Klein quartic that do not extend to a symmetry of the tetrahedral sculp-
ture. For example, we fail to find a symmetry of the sculpture that rotates one heptagon by
a 1

7
th of a turn. The failure to capture this seven fold symmetry of the Klein quartic is not

particular to this sculpture, but intrinsic to any embedding of the Klein quartic. As shown
in Section 2.13, no embedding of the Klein quartic into Euclidean 3-space makes this order
seven symmetry visible. Even though the sculpture is not a perfect representation of the
Klein quartic, it is still the best possible in the sense that no other sculpture could make a
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larger subgroup of the symmetries of the Klein quartic visible.

The goal of this chapter is to look for the “best sculpture” of a given regular map F .

More precisely, we develop a theory to find all subgroups H of the automorphism group of
a regular map F that can be realized by isometries of Euclidean 3-space E3 when mapping,
immersing, or embedding F into E3. This idea is captured by the notion of equivariant
morphisms. We give a complete theoretic solution to this problem resulting in algorithms.
We have implemented some of the algorithms showing that they are feasible on current
hardware.

This chapter is structured as follows:

An equivariant morphism F → M carries as extra datum an (H,B, η)-triple where H is
a subgroup of automorphisms of F , B a subgroup of isometries of M , and η : H ∼= B an
isomorphism relating an automorphism of F to an isometry of M . First, given a regular
map F , we find all (H,B, η)-triples up to the equivalence defined in Section 2.5. Then, we
determine for a triple whether there exists an (H,B, η)-equivariant morphism, immersion, or
embedding. For this, Section 2.6 translates the question to the quotient spaces F/H →M/B
which, in general, are orbifolds reviewed in Section 2.3. If M = S3, we obtain a map

τ : πorb1 (F/H, p)
h−→ H ∼= B ∼= πorb1 (S3/B, p)

and develop a theory in Section 2.7 and 2.8 to decide whether τ is induced by a morphism,
immersion, or embedding.

Section 2.10 and 2.11 describe the resulting algorithms to find all (H,B, η)-triples, respec-
tively, determine whether a (H,B, η)-equivariant morphism, immersion, or embedding exists.

Interesting examples of mappings, immersions, and embeddings of regular maps appear in
Section 2.12 as application of the theory and the algorithms.

To conclude this chapter, we implement some of the algorithms in gap [GAP08] and apply
them in Section 2.13 to the orientable regular maps up to genus 101 in Conder’s census
[CD01, Con09]. For each of those regular maps, we list the subgroups H which fulfill the
necessary or sufficient conditions for an equivariant morphism, immersion, or embedding.

Several theoretical obstacles had to be overcome for these results. An example of an algebraic
subtlety is the right notion of equivalence of two equivariant morphism. The Klein quartic,
for example, has a C7 symmetry given by a rotation about one heptagon, and another such
symmetry group when taking rotations about another heptagon. These symmetries are
showing the same phenomenon but are technically speaking different subgroups. We choose
the definition of equivalence of equivariant morphisms to account for this.

Given that a subgroup of the automorphisms of a regular map and a finite group of isometries
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of Euclidean 3-space are the same algebraically, there is the topological question whether
the (algebraic) group isomorphism is realized by a topological morphism. To address this
problem, we apply orbifold theory, normal surface theory, and the mapping class group.

While developing this theory in Section 2.7.7, we encounter a cohomology obstruction [c(τ)] ∈
H2(X(F );Z/2) that is an equivariant analog to the Stiefel-Whitney class serving as obstruc-
tion for an immersion (see, e.g., [MS74, §4., Immersions]). We give an example of how to
compute it effectively in Section 2.11.5 and 2.12.1.

The algorithm for deciding the existence of equivariant immersions described here allows a
feasible implementation and would find all subgroups that allow equivariant immersions in
reasonable time on current hardware (days) for all regular map in Conder’s census.

This work is related to a SIGGRAPH paper by Jack van Wijk [vW09] on visualizing regular
maps. Professor Carlo Séquin who got me interested in this topic is also working on producing
visualizations of regular maps. The “Regular Map Database” [Wed] also contains pictures
of various models of regular maps.

2.1.1 Conventions

We use the term “regular map” from graph theory as it has been defined and used by, e.g.,
Coxeter and Moser [CM80, Cox69], Conder and Marsden [CD01, Con09], and Jack van Wijk
[vW09].

Unfortunately, there is potential for confusion because the term “map” in topology can also
refer to a continuous or smooth function between spaces, i.e., a morphism in the category
of topological spaces or smooth manifolds. Here, the term “regular map” always refers to
a tessellation of a surface as defined in Section 2.2.1. When talking about a topological
morphism, we always say “mapping”, “morphism”, or “smooth function”. Unless otherwise
indicated, all manifolds, orbifolds, and morphisms are supposed to be smooth or piecewise-
linear, thus ruling out pathological cases such as the Alexander horned sphere.

Throughout this chapter, we assume that every orbifold M is good, closed, orientable, and
connected and has a base point p not in the singular locus Σ(M) of M . We usually denote
a 2-orbifold by F and a 3-orbifold by M .
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2.2 Regular Maps

2.2.1 Definition

Coxeter and Moser [Cox69, CM80] give an introduction to regular maps. We summarize the
definition of regular map here and fix the notation used in later sections.

Definition 2.2.1. A regular map of type {p, q} is a surface with a CW-structure dividing
the surface into p-gons such that q of the polygons meet at each vertex and such that each
p-gon can be taken to any other p-gon in all possible p choices of rotation by some cellular
automorphism.

A regular map is called orientable or non-orientable if the underlying topological space is
orientable or non-orientable.

We can give each p-gon a constant-curvature geometry such that the p-gon is regular, the
edges are geodesics, and the angle at a vertex is 2π/q. This geometrizes a regular map. The
triangle orbifold (2, p, q) is a 2-orbifold (see Section 2.3.4) that is topologically S2 and that
has three singular points of order 2, p, and q. A triangle orbifold has a unique geometric
structure. Hence, the following definition of a regular map is equivalent if we consider only
orientable regular maps and do not distinguish between a regular map of type {p, q} and its
dual of type {q, p}:

Definition 2.2.2. An orientable regular map F of type {p, q} respectively {q, p} is a Rieman-
nian manifold that is a regular branched cover of the triangle orbifold (2, p, q). The automor-
phisms respectively orientation-preserving automorphisms of F are Autreg(F ) = Isom(F ),
Aut+

reg(F ) = Isom+(F ).

Notice that Autreg(F ) is a finite group and Aut+
reg(F ) is isomorphic to the deck transforma-

tions of F as a covering space over the triangle orbifold.

The orientation-preserving automorphisms Aut+
reg(F ) of an orientable regular map are gen-

erated by R which rotates a polygon by one notch and S which rotates F about one vertex
by one notch. Furthermore R and S can be chosen such that T = RS reverses an edge, see
Figure 2.2. Hence, Aut+

reg(F ) is a quotient of the orientation-preserving triangle group

[p, q]+ ∼= 〈R, S|Rp = Sq = (RS)2 = 1〉. (2.1)

We usually only consider orientable regular maps F here. If F is orientable, it is called
reflexible if there is an orientation-reversing automorphism, otherwise it is called chiral.
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A

BC

R

T=RS

S

Figure 2.2: Generators of the triangle group or automorphisms of a regular map (here of
type {7, 3}).

If F is reflexible or non-orientable, then all automorphisms Aut(F ) are generated by R, S,
and a reflection C. Hence, Aut(F ) is a quotient of the triangle group [p, q] (notation from
[CM80]) given by

[p, q] ∼= 〈R, S,C|Rp = Sq = (RS)2 = C2 = (CR−1)2 = (CS)2 = 1〉 (2.2)

which is isomorphic to

[p, q] ∼= 〈A,B,C|A2 = B2 = C2 = (BC)p = (CA)q = (AB)2 = 1〉

where A,B,C are reflections about the sides of the orbifold triangle and the isomorphism is
given by R = BC, S = CA. Notice that [p, q]+ is the index 2 subgroup of [p, q] generated by
R and S.

In other words, the universal cover of a regular map is a regular tessellation of spherical,
Euclidean, or hyperbolic 2-space. The corresponding triangle group is acting on this regular
tessellation. The regular map is obtained as quotient of the space by a normal subgroup of
the triangle group. Conder presents a regular map by giving the generators of this normal
subgroup in [CD01]. Notice, however, that he denotes the reflection C by T .

2.2.2 Classification Results

This section reviews known classification results about regular maps. Coxeter and Moser
[Cox69] and [CM80] review early classification results on regular maps. Conder and Marsden
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have classified all regular maps up to genus g = 101 in 2006 [CD01, Con09]. We use their
notation for regular maps.

For genus g = 0, orientable regular maps are just the Platonic solids.

For g = 1, there are only two possible types of regular maps up to duality: {3, 6} and {4, 4}.
The universal covering space of such a map has vertices which can be identified with the
lattice Z[ζ] ⊂ C with ζ = e2πi/3 respectively Z[i] ⊂ C. Each regular map can be obtained
by dividing Z[ζ] ⊂ C by an ideal 〈z〉 in the Eisenstein integers Z[ζ] respectively Gaussian
integers Z[i] to obtain a torus. This completely classifies orientable regular maps of genus 1.

A particular interesting regular map is the Klein quartic (R3.1 in [Con09]). This regular
map of genus g = 3 and type {3, 7} can also be described as algebraic curve [Kle78, Kle99],
see Section 1.2.1. Hurwitz showed that

∣∣Aut+
reg(F )

∣∣ ≤ 84(g − 1) for any Riemann surface
with g ≥ 2 and, in particular, any orientable regular map F [Hur92]. A regular map that
achieves this upper bound is called a Hurwitz surface. Equivalently, a Hurwitz surface is a
regular cover of the minimal volume hyperbolic orbifold of type (2, 3, 7), hence, it is a regular
map of type {3, 7} or {7, 3}. The Klein quartic is the minimal volume Hurwitz surface.
The next Hurwitz surface is the Macbeath surface (R7.1 in [Con09]) of genus g = 7 which
has orientation-preserving symmetry group PSL(2, 8). For genus g = 14, there are three
different Hurwitz surfaces up to duality [Con09], two of them have the same symmetry group
PSL(2, 13) but come from different representations of PSL(2, 13) as quotients of the [3, 7]+

triangle group (see [Mac99] or [CM80, Chapter 7.5]). Macbeath constructs an infinite family
of Hurwitz surfaces [Mac61]. Starting with a Hurwitz surface F of genus g, Macbeath uses the
holonomy π1(F ) � H1(F ;Z/m) to construct a covering space that is a new Hurwitz surface
of genus (g−1)m2g. Larsen shows that the genuses g of Hurwitz surfaces are distributed like
perfect cubes [Lar01]. The connections of the Klein quartic to other areas of mathematics
such as Number Theory and Algebraic Geometry are covered in [Lev99].

2.3 Review of Orbifold Theory

This section is reviewing orbifolds, the orbifold fundamental group, and covering space theory
for orbifolds. It can be skipped by readers familiar with orbifolds. It is assumed that the
reader is familiar with covering space theory for topological spaces as it is treated in, e.g.,
[Hat02, Chapter 1].

Orbifolds and the orbifold fundamental group are also treated in [Rat94] and [Sco83]. A
visual explanation of 2-orbifolds can be found in [CDGT91].
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2.3.1 Orbifolds

We consider only 2- and 3-dimensional orientable orbifolds M . Recall that an orbifold is
locally modeled on the quotient of a subset Vi of Euclidean n-space En by a discrete subgroup
Γi of SO(n). Or more formally, M is a topological manifold X(M) together with compatible
orbifold charts {φi : Vi � Vi/Γi ∼= Ui} where Vi ⊂ En and Ui ⊂ X(M) are open subsets
and the Ui cover X(M). Given a connected U ⊂ Ui, the preimage φ−1

i (U) splits into several
connected components, pick one, say V . Let Γ be the subgroup of Γi fixing V . The restriction
of the orbifold chart φi yields a new orbifold chart φ : V � V/Γ ∼= U . For example, when
restricting a 3-orbifold near a trivalent vertex to a small neighborhood intersecting an edge, Γ
becomes a cyclic group. Two orbifold charts on Vi and Vj are compatible if their restrictions
to Vi ∩ Vj yield isomorphic Γ and the two restrictions are related through a Γ-equivariant
isomorphism.

We use the notation X(M) for the topological space underlying an orbifold M and Σ(M)
for the singular locus, i.e., the set of the points where there is no orbifold chart with trivial
Γi.

A 2-orbifold has as underlying topological space X(M) a genus g surface. The singular locus
Σ(M) ⊂ X(M) is a discrete set of points labeled by natural numbers. Near a singular point
s of order k, the orbifold is modeled on a k-cyclic cover Vi → Ui branched over s.

Section 1.9 describes the structure of 3-orbifolds and their singular locus Σ(M).

A manifold can be regarded as an orbifold with empty singular locus.

2.3.2 Orbifold Morphisms

General Orbifold Morphism

An orbifold morphism t : F →M is a mapping X(F )→ X(M) of the underlying topological
spaces that locally lifts to the orbifold charts. This means that every point p ∈ X(F ) has a
neighborhood U 3 p in X(F ) and a Γ-equivariant mapping t̃ : V → V ′ making the following
diagram commute:

V
t̃ //

φ
��

V ′

φ′

��

X(F ) ⊃U t // U ′⊂ X(M)

where φ and φ′ are (restrictions of) the orbifold charts on F and M and Γ is the group
associated to the orbifold chart φ.
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From 2-Orbifold to 3-Orbifold

3
4

44

3 4

4

φ
Γ = Z/4

φ′
Γ′ = [3, 4]+

t̃

t

Figure 2.3: 2-orbfiold F intersecting vertex of Σ(M).

An orbifold morphism t : F → M from a 2-orbifold to a 3-orbifold can potentially intersect
Σ(M) in a vertex of the trivalent graph. Figure 2.3 shows this in the case where F is
locally modeled on a 4-cyclic branched cover and M is locally modeled on the quotient by
Γ′ = [3, 4]+, the rotations of a cube. The figure shows the orbifold morphism t : F →M and
its lift to the orbifold charts. On the orbifold charts, we have a Z/4-equivariant embedding
of the disk into a cube. We can perturb the embedding to avoid the center of the cube.
Notice that on the orbifold charts, the perturbed disk intersects an order 3 axis, hence, a
non-singular n point of F is sent to M . Sending a non-singular point n to a singular point
possible because the perturbed X(F )→ X(M) is a 3-cyclic cover branched at n.

Similarly, X(F ) might intersect Σ(M) non-transversely. We again perturb the morphism a
bit. From now on, we assume that X(F ) intersects Σ(M) transverse, and if dim F = 2 and
dim M = 3, X(F ) does not intersect the vertices of the trivalent graph Σ(M).
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2.3.3 Orbifold Fundamental Group

Definition 2.3.1. The orbifold fundamental group of an orientable orbifold (M, p) has as
elements the equivalence classes of loops in X(M) \ Σ(M) and the usual addition:

πorb1 (M, p) =
{γ : (S1, p)→ (X(M) \ Σ(M), p)}

∼
.

Here, we consider two loops γ and γ′ equivalent if they span a cylinder in M , i.e., if there is
an orbifold morphism h : (S1 × I, p× I)→ (M, p) such that h|0 = γ, h|1 = γ′. In particular,
a loop is zero, if it spans a disk D →M .

p
γs

s

Figure 2.4: Simple singular loop.

Definition 2.3.2 (Simple singular loop). Let (M, p) be an orientable 2- or 3-orbifold. Take
a loop bounding a small embedded disk in X(M) that intersects Σ(M) in one point s (not
being a vertex of the trivalent singular graph if dimM = 3). Connecting this loop through a
path to p gives an element γs ∈ π1(X(M) \ Σ(M), p), see Figure 2.4. We call γs a simple
singular loop (ssl). The order ord (γs) of γs is the order of s as singular point.

Remark 2.3.3. Given s, the loop γ±1
s is defined only up to conjugacy, but this choice does

not matter in theorems involving, e.g., the order of γs.

By Lemma 2.3.5 proven later, the following definition is equivalent to Definition 2.3.1:

Definition 2.3.4. Let (M,P ) be an orientable 2- or 3-orbifold. The orbifold fundamental
group πorb1 (M, p) is

πorb1 (M, p) =
π1 (X(M) \ Σ(M), p)

〈γord(γs)
s : γs is ssl〉

.
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Simple Singular Loops

Consider a disk D without singular points and embed it topologically into X(M) such that
it intersects the singular locus of X(M) in a single point s of order k. The embedding of
the topological spaces is not an orbifold morphism because there is no choice for the top
horizontal arrow making the following diagram commute:

D k

V V ′

φ
Γ trivial

φ′

Γ = Z/k

topological
embedding

Connecting this disk by a little strip to the base point p gives again a disk whose boundary
is a ssl γs. Because the embedding of D into the topological space X(M) is not an orbifold
morphism, this disk does not trivialize γs in πorb1 (M, p). In fact, γs is non-trivial in πorb1 (M, p)
if M is a good orbifold.

However, the loop γks bounds a disk D → X(M) mapped through a branched k-cyclic cover.
This mapped disk lifts to an embedding on the orbifold charts. Hence, D →M is an orbifold
morphism making γks zero in πorb1 (M, p):

p
γks

s

Orbifold Morphisms and Immersions in Dimension 2 and 3

In general, if a topological morphism t : X(F ) → X(M) sends an order m singular point s
in F to an order k singular point in M and t is a n-cyclic cover branched over the singular
point near that point, then it is an orbifold morphism near this point if and only if k|mn.
In this case, an l-cyclic cover with l = mn/k makes the following diagram commute (where



70

31 not an orbifold morphism

1

not an orbifold immersion2

2 not an orbifold immersion

16 not an orbifold immersion3

13 not an orbifold morphism61

orbifold immersion23 6

orbifold immersion2 2

Figure 2.5: Examples of orbifold morphisms and immersions and non-morphisms.
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labels on arrows denote the degree of the cyclic branched cover):

nm k

l

km

(2.3)

If l = ±1, the orbifold morphism is an orbifold immersion because it is an immersion when
lifted to the orbifold charts.

Figure 2.5 shows examples of topological mappings X(F ) → X(M) that are or are not
orbifold morphisms or immersions.

Orbifold Fundamental Group Revisited

The group homomorphism

j : π1(X(M) \ Σ(M), p)→ πorb1 (M, p) (2.4)

is well defined: two loops equivalent in π1(X(M) \ Σ(M), p) are equivalent in πorb1 (M, p)
because a cylinder (S1 × I, p × I) → (X(M) \ Σ(M), p) between them is a valid orbifold
morphism into M .

Lemma 2.3.5. Definition 2.3.1 and 2.3.4 of the orbifold fundamental group πorb1 (M, p) are
equivalent.

Proof. We already have seen that γ
ord(s)
s is in ker(j). It is left to show that a loop trivial in

πorb1 (M, p) is in
〈
γ

ord(γs)
s

〉
, i.e., if a loop γ bounds a disk i : D →M in M , then γ is homotopic

to a product of ssl’s. Assume that i−1(Σ(M)) consists of only one point s ∈ D mapped to
an order k singular point in M . We can pick a small disk-like neighborhood U of s such that
i|U is topologically a mk-cyclic cover branched over s. Connect U to the base-point p by a
path in D. The boundary of U together with the path is γmki(s) with γi(s) being a ssl. The rest

of the disk serves as homotopy between γi(s) and γ = ∂D in (X(M) \ Σ(M), p). If several
points si ∈ D are sent to Σ(M), pick disjoint neighborhoods Ui and disjoint paths to p. Now
γ is homotopic to a product of powers of ssl’s, see Figure 2.6.
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U

p
γks

s

γ

p

Figure 2.6: A disk intersecting the singular locus once is a power of a ssl.

2.3.4 Orbifold Covering Space Theory

Orbifold Covering Spaces

An orbifold morphism p : M̃ → M is an orbifold covering space if every point α ∈ M has a
neighborhood Uα such that p restricted to Uα and lifted to the orbifold charts is a topological
covering space. In other words, p−1(Uα) = ∪iVi,α is a union of disjoint open sets Vi,α such
that p|Vi,α is an orbifold immersion onto Uα.

Notice that an orbifold covering space p : M̃ →M can be a branched cover on the underlying
topological spaces, but when lifted to the orbifold charts, the branch points of p have to
disappear.

Example 2.3.6. Every orbifold immersion in Figure 2.5 is a covering space.

Example 2.3.7. Given a smooth, orientable manifold M and a properly discontinuous,
orientation-preserving group action G, the quotient space M/G is an orbifold, the singular
points coming from fixed points of M under an element g ∈ G. The morphism M → M/G
is a covering space in the orbifold category.

Example 2.3.8. The triangle group [p, q]+ is acting on S2, E2, respectively, H2. The quotient
space is topologically S2 with three singular points of order two, p, and q. We call this
orbifold the triangle orbifold. Regular maps are exactly the regular covering spaces of a
triangle orbifold that are compact and manifolds.

Universal Covering Space

Definition 2.3.9. Let (M, p) be a connected, orientable orbifold. The universal orbifold
covering space (M̃, p) is the unique orbifold covering space with πorb1 (M̃, p) = 0.



73

The universal orbifold covering space always exists. To see this, drill out the singular locus:
X(M) \Σ(M). Take the normal subgroup G of π1(X(M) \Σ(M), p) generated by all γ

ord(s)
s

where γs is a ssl around the singular point s of order ord(s). By [Hat02, Theorem 1.38], G
determines a (topological) covering space of X(M) \Σ(M). Fill back the singular locus into
this covering space to obtain M̃ .

Definition 2.3.10. Let (M, p) be a connected, orientable orbifold. We say (M, p) is good if
the universal orbifold covering space is a manifold.

Remark 2.3.11. It is already sufficient (and necessary) that (M, p) has any covering space
that is a manifold (i.e., any covering space branched over the singular locus such that the
singular locus disappears). This is equivalent to saying that the order of a ssl γs as group
element in πorb1 (M, p) is the order of the singular point s.

Example 2.3.12. Take S2 and add a single singular point s. This is a bad orbifold because
a ssl γs is zero in πorb1 (M, p).

Classification of Orbifold Covering Spaces in Category Theory Language

Classical results about topological covering spaces (see [Hat02, Chapter 1]) carry over to
orbifold covering spaces when replacing the fundamental group by the orbifold fundamental
group.

The following theorem summarizes these results in the language of categories:

Theorem 2.3.13. Let (M, p) be an orientable, connected orbifold. The category of orbifold
covering spaces (M̄, p)→ (M, p) is equivalent to the category of pointed πorb1 (M, p)-sets.

Proof. Given a covering space (M̄, p) → (M, p), the preimages of p form a set with a
πorb1 (M, p)-action. This is one of the functors giving the category equivalence.
Given a πorb1 (M, p)-set X, the other functor yields the associated bundle (M̄, p) → (M, p).
In other words, take a disjoint copy of the universal covering space for each element in X:
(M̃ ×X, p). There is the πorb1 (M, p)-action on M̃ by deck transformations and there is the
given πorb1 (M, p)-action on the set X. Hence, πorb1 (X, p) acts on (M̃ ×X, p). Divide out by
this action to obtain the covering space (M̄, p)→ (M, p).

We now define the contravariant functors Cov and πorb1 −Sets from the category Orb of
connected, orientable orbifolds with base point to the category Cat of categories.
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Let Cov be the functor that assigns to an orbifold the category of covering spaces:

Cov : Orb → Catop

(M, p) 7→ {(M̄, p)→ (M, p)}.

Similarly, let πorb1 −Sets be the functor that assigns to an orbifold (M, p) the category of
pointed πorb1 (M, p)-sets:

πorb1 −Sets : Orb → Catop

(M, p) 7→ {πorb1 (M, p)−Sets}.

The constructions in the proof are inverse natural transformations between the functors Cov
and πorb1 −Set.

Classification of Orbifold Covering Spaces

Corollary 2.3.14. Connected covering spaces of an orientable, connected orbifold (M, p)
correspond to subgroups of πorb1 (M, p) [Hat02, Theorem 1.38], regular covering spaces to
normal subgroups [Hat02, Proposition 1.39]. Finite covering spaces can be specified by a
representation of πorb1 (M, p) into Sn, namely by the action of πorb1 (M, p) on the fiber. If the
covering space is regular, the fiber becomes a group G and the covering space is specified by
a representation of πorb1 (M, p) into a group G.

We call this representation πorb1 (M, p)→ G the holonomy of the covering space.

Corollary 2.3.15. A regular covering space is a manifold if the holonomy sends an ssl to
an element in G of the same order.

2.4 Standard Orbifold Handle Decomposition

A surface can be glued together from 0-, 1-, and 2-handles yielding a handle decomposition
(see, e.g., [GS99] for definition of handles and handle decomposition). Defining an orbifold
0-handle as a disk with a singular point, we can similarly obtain handle decompositions of
2-orbifolds. In other words, starting with a handle decomposition of a surface, we turn some
0-handles into orbifold 0-handles to add singular points to the surface yielding a 2-orbifold.

If the orbifold F has a base point p, we require p to be in its own 0-handle.
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2.4.1 Standard Handle Decomposition

Usually, we consider the standard handle decomposition of a 2-orbifold (F, p) shown in Figure
2.7. This handle decomposition consists of the minimal number of handles such that we
obtain the following finite presentation of the orbifold fundamental group:

πorb1 (F, p) = 〈σ1, . . . , σk, α1, β1, α2, . . . , βg|
∏

σj
∏

[αi; βi] = σ
ord(s1)
1 = · · · = σ

ord(sk)
k = 1〉.

In other words, this handle decomposition has the ordinary 1-handles of a genus g surface
plus an extra orbifold 0-handle and 1-handle for each singular point sj ∈ Σ(F ), the extra
1-handle connecting sj to p.

If we remove the singular points from F , we obtain the following finite presentation of the
fundamental group of the punctured surface:

π1(X(F ) \ Σ(F ), p) = 〈σ1, . . . , σk, α1, β1, α2, . . . , βg|
∏

σj
∏

[αi; βi] = 1〉.
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σ1
σk

s1

sk

α1

β1αg

βg

+ 2-handle

σ1

σkα1

β1αg

βg

Figure 2.7: Standard handle decomposition of a 2-orbifold (F, p) with k singular points
and genus g and standard generators of πorb1 (F, p).
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2.5 Equivalence of Equivariant Morphisms

Let F be a regular map and M be a 3-manifold.

Definition 2.5.1. Let H ⊆ Aut+
reg(F ), B ⊆ Aut+(M) be subgroups of automorphisms of the

spaces F and M and η : H ∼= B be an isomorphism. An (H,B, η)-equivariant morphism is
a morphism F →M such that for every h ∈ H, the following diagram commutes:

F //

h
��

M

η(h)
��

F //M

Definition 2.5.2. Let m,m′ : F → M be an (H,B, η)- respectively (H ′, B′, η′)-equivariant
morphism. The morphisms are equivalent if there exists i ∈ Autreg(F ) and c ∈ Aut(M) such
that the following conditions hold:

1. The following diagram commutes:

F
m //

i
��

M

c
��

F m′ //M

2. The respective groups are related through conjugation:

H ′ = iHi−1, B′ = cBc−1.

3. The above diagram commutes in an H-equivariant fashion. More precisely, the follow-
ing diagram commutes:

h_

��

H

��

∼=
η
// B

��

b_

��

ihi−1 H ′
∼=
η′
// B′ cbc−1
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2.6 Translation from Equivariant Morphisms to Orb-

ifolds

Let F and M be a 2-, respectively, 3-dimensional smooth orientable manifolds. Given a
subgroup H ⊂ Aut+

reg(F ), we obtain a covering space F → F/H where F/H is the quotient
orbifold. The covering space has a holonomy πorb1 (F/H, p) � H. Namely, p ∈ F/H has as
preimage anH-fiber with πorb1 (F/H, p)-action. The orbifold F/H together with the holonomy
πorb1 (F/H, p) � H encodes all information to recover F and the H-action. Similarly, for
M/B.

Lemma 2.6.1. (H,B, η)-equivariant morphisms (F, p)→ (M, p) are in 1-1 correspondence
with orbifold morphisms (F/H, p)→ (M/B, p) such that the following diagram commutes:

πorb1 (F/H, p) //

����

πorb1 (M/B, p)

����

H
η

// B

This holds for piecewise-linear/smooth functions, immersions, and embeddings.

Here, an orbifold immersion is an orbifold morphism that is an embedding when locally
lifted to the orbifold charts. An orbifold embedding is an orbifold morphism that is an
embedding on the topological spaces X(F ) → X(M) and sends singular points to singular
points of the same order.
To see that this is the right notion, notice that an (H,B, η)-equivariant embedding remains
an embeddings when restricted to the interior of a fundamental domain of M under the B-
action. Hence, an orbifold embedding F →M has to have the property that X(F )\Σ(F )→
X(M) \ Σ(M). This implies that near a singular point of F , the mapping X(F ) → X(M)
has degree one, and the singular point of F has to go to a singular point of the same degree.

2.7 Theory about Mappings and Immersions

Let (F, p) and (M, p) be good, connected, orientable orbifolds of dimension 2 and 3, respec-
tively. Let τ : πorb1 (F, p)→ πorb1 (M, p) be a group homomorphism.

In this section, we list necessary and sufficient conditions for τ to be induced by an actual
orbifold morphism or immersion (F, p) → (M, p). Theorem 2.7.7 does this in the mapping
case. Lemma 2.7.6 and Theorem 2.7.30 do this in the immersion case.

These results are obtained by successively mapping the 0-, 1-, and 2-skeleton of F into M .
Section 2.7.1 defines simple singular loops, singular loops, and multiple singular loops as extra
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data on πorb1 . They serve to detect when τ allows mapping and immersing the 0-skeleton in
Section 2.7.2. The 1-skeleton is immersed into M in Section 2.7.3.

For the immersion case, we also need to understand when a 2-handle can be immersed into
M so that it glues to the 1-skeleton in a compatible way. The boundary of the 1-skeleton
consists of immersed ribbons (framed knots if perturbed). In Section 2.7.5, we define a Z/2-
framing invariant of an immersed ribbon that detects whether the immersed ribbon bounds
an immersed 2-handle. In Section 2.7.6, we list all possible regular homotopy classes of
immersions of the 1-skeleton. In Section 2.7.7, we apply the Z/2-framing invariant to the
immersions of the 1-skeleton yielding a cohomology class [c(τ)] ∈ H2(X(F );Z/2) that – if
defined – is an obstruction to τ being realized by an immersion.

Section 2.7.8 classifies all regular homotopy classes of immersions (F, p) → (M, p) inducing
τ .

2.7.1 Definitions of Singular Loops

In this section, we define three types of loops in πorb1 to detect a necessary condition on a
homomorphism τ : πorb1 (F, p)→ πorb1 (M, p): τ has to send a simple singular loop to

• a singular loop (sl) if τ is induced by an orbifold morphism,

• a multiple singular loop (msl) if τ is induced by an orbifold immersion,

• a simple singular loop (ssl) if τ is induced by an orbifold embedding.

p
γs

s

Figure 2.8: Simple Singular Loop.

Definition 2.7.1 (Simple singular loop). Let (M, p) be a good, connected, orientable 2- or 3-
orbifold with base point. Take a loop bounding a small embedded disk in X(M) that intersects
Σ(M) in one point s (not being a vertex of the trivalent singular graph if dimM = 3).
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Connecting this loop through a path to p gives an element γs ∈ πorb1 (M, p), see Figure 2.8.
We call γs a simple singular loop (ssl).

Remark 2.7.2. Up to conjugacy and taking inverses, a ssl γs is determined by the point s.

Definition 2.7.3. A singular loop (sl) is a (possibly trivial) multiple γps of a ssl γs. A
multiple singular loop (msl) is a non-trivial element γns ∈ πorb1 (M, p) such that n ∈ Z
divides ord (γs) and γs is a ssl.

Remark 2.7.4. Consider an orbifold 0-handle of order two and four. Then there is an
orbifold immersion from the first to the second orbifold 0-handle that is a 2-cyclic branched
cover on the underlying topological space. Hence, the ssl is taken to twice a ssl in πorb1 , i.e.,
a msl, motivating the above definition.

2.7.2 Mapping and Immersing Orbifold 0-Handles

Recall that an orbifold 0-handle was defined as a disk with a singular point. Consider a
mapping of an orbifold 0-handle D with singular point d of order m into a good, connected,
orientable 3-orbifold (M, p). The boundary of D in M represents a conjugacy class in
πorb1 (M, p). Notice that we can homotope γd = ∂D to a loop arbitrarily close to the singular
point in D. Hence, the image of ∂D has to be a sl γns where s is the image of d. Lifting
D →M to the orbifold charts, we obtain the following commutative diagram with D on the
left and a neighborhood in M on the right:

nm k

l

km

(2.5)

Lemma 2.7.5. Let D be an orbifold 0-handle with singular point d of order m and (M, p)
be a good, connected, orientable 3-orbifold. The elements γ ∈ πorb1 (M, p) represented (up
to conjugacy) by mappings D → M are exactly the sl’s γns with ord(γs)|mn. The elements
represented by immersions are exactly the sl’s γns with ord(γs) = ±mn, i.e., the msl’s γns
with ord(γns ) = ±m.

Proof. Commutative Diagram 2.5 implies mn = lk where k = ord(γs). If D → M is an
immersion, then l = ±1. Hence, the conditions on γ are necessary.
Given a sl γns ∈ πorb1 (M, p), pick an n-fold cover of the underlying topological spaces X(D)→
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X(M) branched over d mapping d to s. The conditions on γns are sufficient to complete
Commutative Diagram 2.5. Hence, we obtain an orbifold morphism, respectively, immersion
D →M .

2.7.3 Mapping and Immersing the 1-Skeleton

Lemma 2.7.6. Let F1 be the 1-skeleton of a good, connected, orientable 2-orbifold (F, p).
Let (M, p) be a good, connected, orientable 3-orbifold. Let τ : πorb1 (F1, p) → πorb1 (M, p) be a
group homomorphism. Then τ is induced by a mapping t1 : (F1, p)→ (M, p) if and only if τ
sends every ssl γd ∈ πorb1 (F1, p) to a sl. τ is induced by an immersion if and only if τ sends
every ssl γd ∈ πorb1 (F1, p) to a msl and ord(τ(γd)) = ord(γd).

Proof. Consider an orbifold 0-handle D with singular point d of order m in F1. ∂D rep-
resents (up to conjugacy) a ssl γd ∈ πorb1 (F1, p). ord(τ(γd))|ord(γd) because τ is a group
homomorphism. Assume τ(γd) is a sl γns , then

ord(τ(γd)) = ord(γns ) =
ord(γs)

gcd(ord(γs), n)
|ord(γd) = m.

Hence, by Lemma 2.7.5, we can map D into M to represent τ(γd) up to conjugacy.
Similarly, if τ(γd) is a msl with ord(τ(γd)) = ord(γd), the same lemma implies that we can
immerse the 0-handle.

The (non-orbifold) 0-handles can be immersed arbitrarily as long as their boundaries don’t
intersect and the base point p ∈ F1 goes to the base point p ∈M .

It is left to immerse the 1-handles. Pick an order for doing this such that each 1-handle is
connected to p by previously immersed 1-handles. If a 1-handle is connecting an orbifold
0-handle D with singular point d, we get a ssl γd ∈ πorb1 (F1, p). Immerse the 1-handle so that
connecting the image of ∂D to p via the core of the 1-handle gives the conjugate equal to
τ(γd) in the conjugacy class represented by ∂D. If a 1-handle closes a loop γ, pick the core
to represent τ(γ). Otherwise, immerse the 1-handle arbitrarily.

2.7.4 Main Theorem for Mappings

Theorem 2.7.7. Let (F, p) respectively (M, p) be a good, connected, orientable 2- respectively
3-orbifold with base points. Let τ : πorb1 (F, p)→ πorb1 (M, p) be a group homomorphism. Then
τ is induced by an orbifold morphism t : (F, p)→ (M, p) if and only if τ sends sl’s to sl’s.
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Proof. Compose τ with the inclusion F1 ⊂ F . Lemma 2.7.6 states that the above condition
is sufficient and necessary for the 1-skeleton F1 to map into M .
Each 2-handle in F is attached to F1 along a circle γ that is zero in πorb1 (F, p). The image
of γ in πorb1 (M, p) is also zero, hence, it spans some disk in M . Map the 2-handle onto this
disk.

2.7.5 Immersed Ribbons Spanning Immersed Disks

This section reviews framings of knots. Theorem 2.7.16 is the result needed later in the Main
Theorem for Immersions.

Given a knot K in a connected, orientable 3-manifold M , a framing is specified by a nowhere-
zero transverse vector field v to K. We denote a framed knot by (K, v). A framing v can
also be thought of as a curve on the boundary ∂N (K) of a tubular neighborhood of K.
A framed knot (K, v) is also equivalent to an embedded ribbon S1 × I → M , one of the
boundary components being K. We have the following well-known theorem:

Theorem 2.7.8. Fixing the isotopy class of K, isotopy classes of framed knots (K, v) cor-
respond to integers Z.

Definition 2.7.9. If K is a null-homologous knot, the longitude on ∂N (K) is the generator
of im(H1(M \ N (K))→ H1(∂N (K))).

By the Mayer-Vietoris sequence, the longitude (up to multiplicity) is induced by any mapped
surface (S, ∂S) → (M \ N (K), ∂N (K)). The longitude is also realized by an embedded
surface (not proven here). For a projection of a knot in S3, the embedded surface can be
seen directly using Seifert’s algorithm.

Remark 2.7.10. We can also obtain the longitude from a surface (S, ∂S)→ (M,∂N (K)) in
M if we count the intersections of S with K as meridians (after perturbing S to intersect K
transversely). More precisely, S intersects N (K) in disks. Remove them from S producing
new boundary components ∂S that are meridians in ∂N (K).

Remark 2.7.11. If K is not homologically trivial, a canonical longitude might not exist,
e.g., take the core of a solid torus S1 ×D2.

Theorem 2.7.12. If K is null-homologous in M , the correspondence in Theorem 2.7.8 is
canonical, the 0-framing of K being given by a longitude on ∂N (K).

Definition 2.7.13. The framing number f(K, v) is the number of right-handed full-twists
needed to obtain the framing (K, v) from the 0-framing of K.
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Remark 2.7.14. Given (K, v), we can compute the framing number as the linking number
of K and the curve in ∂N (K).
In a knot projection, the blackboard framing has framing number given by the writhe [GS99,
Proposition 4.5.6] which can be computed counting the crossings of K with the appropriate
signs.

Let us weaken the conditions on K and let K be an immersion S1 → M , thus allowing
self-intersections. An immersed ribbon is an immersion of an annulus S1 × I into M . We
regard two immersed ribbons as equivalent if they are related through a regular homotopy.
Generically, an immersed ribbon is a framed knot (K, v) and we can compute the framing
number f(K, v) if K is null-homologous. If K has a self-intersection, there is a choice how
to perturb (K, v), hence, even for null-homologous (K, v), the framing number is defined
only modulo two in this case. Thus, Theorem 2.7.12 becomes (notice that two homotopic
immersed loops S1 →M are also regular homotopic):

Theorem 2.7.15. Fixing the (regular) homotopy class of K, regular homotopy classes of
immersed ribbons (K, v) correspond to elements in Z/2.

This is proven later. If K is null-homologous, Theorem 2.7.12 applies again for immersed
ribbons and Z/2, and, if K is null-homotopic, the theorem becomes:

Theorem 2.7.16. If K is null-homotopic, the immersed ribbon (K, v) has a canonical fram-
ing number in Z/2 that is 0 if and only if (K, v) is spanned by an immersed disk in M . If
a (mapped) disk D → M spans an immersed ribbon (K, v), perturb the disk such that it is
locally an embedding except at n places where it has a branch point, see Figure 2.9. Then
the framing of (K, v) is n modulo 2. This also applies for a null-homotopic immersed ribbon
(K, v) in a good, orientable, connected 3-orbifold.

Figure 2.9: Branch point where a disk fails to be immersed.

Remark 2.7.17. The Z/2-framing number of the blackboard framing of a projection of K
is simply the number of crossings modulo two.
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Example 2.7.18. Consider the blackboard framing of the projections of knots in S3 in
Figure 2.10. Notice that the cross-cap is a mapped disk inducing framing +1, but has a
branch point.

Figure 2.10: Blackboard framings of knots.

Remark 2.7.19. The condition that M is a good orbifold is necessary. The 2-orbifold F
with X(F ) = S2 and Σ(F ) consisting of a single point s of order 2 is bad. Take a ribbon
around the equator of F . The ribbon spans a disk, namely the hemisphere not containing s.
Take the double cover of the ribbon. It also spans an immersed disk topologically branched
over s. Compose the ribbons with the embedding F × p ⊂ F × S1, now the two cases are
related through a single full twist and a regular homotopy.

We now prove the theorems for immersed ribbons.

Proof of Theorem 2.7.16. Without loss of generality, perturb the immersed ribbon to a
framed knot. Since M is a good orbifold, we can lift a disk D → M to the universal
cover M̃ which is a manifold. Hence, we can assume that M is a 3-manifold. A regular
homotopy between two knots extends to an ambient regular homotopy carrying potential
immersed disks, thus the property of spanning an immersed disk stays invariant under regular
homotopy.

The theorem follows from the following three facts:

Two curves γ and γ′ in N (K) induced by immersed disks intersect an even number
of times.

We can perturb the disks such that they intersect transversely. If γ and γ′ intersect in a
point, then the two disks intersect transversely in an arc that again ends on ∂N (K). Hence,
γ and γ′ intersect in an even number of points. This implies that the framing induced by
the two disks differs by an even number of twists.
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Two full twists of the framing can be achieved by a regular homotopy.

There is an immersed disk of the unknot in S3 inducing the +2 framing:

Add this little immersed disk and unknot to K and then apply an ambient isotopy to
straighten out the unknot:

There is an immersed disk spanning K.

K spans a disk because it is null-homotopic. We can homotope the disk to be smooth or
piecewise linear (e.g., by simplicial approximation). We can furthermore perturb the disk so
that the points where it fails to be a local embedding are branch points of order 2, see Figure
2.9, i.e., the disk is locally the cone on a figure eight (see [Oer04, §1, Case2] or [Whi44]).

If there are two or more branch points, find a curve in D connecting two. “Zipping” along
the curve, i.e., moving the branch points together, annihilates them as shown in the following
picture (see [Oer04, §1, Case 2] or [Bin83]):
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If there is only one branch point left, push it off over the boundary of D, this changes the
framing the disk induces, see Figure 2.11.

Figure 2.11: Pushing off a branch point over the boundary of a disk. The disk in the
left picture has a branch point and the disk induces framing +1. After pushing off the
branch point, the disk is immersed and consists of two disks glued by a vertical strip with a
half-twist. The induced framing is 0 since the disk is even properly embedded.

Proof of Theorem 2.7.15. Two homotopic K are regular homotopic and we can change the
framing by two through a regular homotopy. Hence, there are at most two regular homotopy
classes of immersed ribbons. The two classes are related through a full-twist. It is left to
show that the two classes are distinct, i.e., that a regular homotopy (K, v) cannot change the
framing by a full-twist. Assume there is such a regular homotopy. Without loss of generality,
the regular homotopy fixes a part U of (K, v). Let (K, v)−1 be the ribbon with opposite
orientation of S1. We can perturb, cut, and glue (K, v) and (K ′, v)−1 near U together
to represent a null-homotopic 0-framed knot. The regular homotopy can act now on the
glued ribbon by changing (K, v) but not (K, v)−1. The glued ribbon being null-homotopic,
Theorem 2.7.16 applies.
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2.7.6 Regular Homotopy Classes of the Immersed 1-Skeleton

Let M = S3/Γ with Γ ⊂ SO(4) be a spherical orbifold with base point p. Let F1 be the
1-skeleton of a good, connected, orientable 2-orbifold. Let τ : πorb1 (F1, p) → πorb1 (M, p) be a
group homomorphism mapping each ssl γs to a msl with ord(τ(γs)) = ord(γs).

Lemma 2.7.20. Let γ ∈ πorb1 (M, p) ∼= Γ be a non-trivial msl γns . Then, the conjugacy class
of γ can be represented by an immersed orbifold 0-handle of order ord(γ) = ord(γs)/n that
is uniquely determined up to regular homotopy and up to a possible flip. By connecting the
boundary of the orbifold 0-handle with an arc to p, we can represent γ exactly. This fixes an
orientation of the orbifold 0-handle if and only if ord(γ) 6= 2.

Proof. Let g ∈ Γ be the element corresponding to γ. Let s be the image of the singular
point of the orbifold 0-handle. When the immersion is lifted to S3, the point s has to go to
a fixed point of g. The set of fixed points of g is a circle, all small immersed disk around the
circle with the same orientation are in the same regular homotopy class. If ord(γ) 6= 2, the
orientation of the boundary of the immersed disk is determined. Sliding the immersed disk
around the circle might result in immersed orbifold 0-handles around the same edge of Σ(M)
but with different orientations. Fixing an arc connecting the disk to p fixes the orientation
on the orbifold 0-handle.
To see that the fixed point set of g is a circle, we can think of S3 as E3 ∪ {∞} using the
stereographic projection. Without loss of generality, the point s can be chosen to be the
origin in E3. Then, g induces an isometry of the tangent space at the origin. This is a
rotation fixing an axis. The exponential map gives a circle in S3.

Remark 2.7.21. Let Γ be the symmetries of a regular tetrahedron in E3 ⊂ S3. Pick an
order three symmetry axis of the tetrahedron. This axis intersects both a face and a vertex
of a tetrahedron. Slide a embedded disk around the axis from one of these intersection to
the other passing through the center of the tetrahedron.
The 3-orbifold S3/Γ has X(S3/Γ) ∼= S3 and Σ(S3/Γ) is the unique trivalent graph with two
vertices and no reflexive edges. The order of the edges in Σ(S3/Γ) are two, three, and three.
The embedded disk becomes an immersed orbifold 0-handle around an order three edge in
Σ(S3/Γ). Sliding the above disk along the axis takes the orbifold 0-handle to the other order
three edge.

Remark 2.7.22. Let Γ be the symmetries of a regular octahedron in E3 ⊂ S3. The 3-
orbifold is similar to the one in the previous remark, but the orders of the edges of Σ(S3/Γ)
are two, three, and four. Take a small embedded disk around an order three symmetry axis
of the octahedron. Sliding the disk around results in immersed orbifold 0-handles around
the same edge. The orientation however flips when the disk is going through the center of
the octahedron. If we trace an arc connecting the orbifold 0-handle, the arc crosses Σ(M)
at this point as well.
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Lemma 2.7.23. All morphisms (F1 \Σ(F1), p)→ (M, p) inducing τ are in the same homo-
topy class.

Proof. Notice that F1 \ Σ(F1) has no singular points and deformation retracts to G ⊂ F1 \
Σ(F1) being a wedge product of loops γ, some being ssl around singular points and some
being generators of π1(X(F1), p). The homotopy class of each loop γ is determined by its
image under τ .

To obtain all regular homotopy classes of immersions t1 : (F1, p) → (M, p), we need to
consider all possible choices of thickening G in M and then filling the singular locus Σ(F1).
This means that we need to pick a choice of framing on each loop of G. For a loop in G that
is a generator of π1(X(F1), p), we have a Z/2 choice by Theorem 2.7.15. Consider a loop γ
in G ⊂ F1 \ Σ(F1) representing a ssl γd ∈ πorb1 (F1, p). In order to fill the singular locus d,
we need to homotope (G, p) → (M, p) so that γ becomes the boundary of a small disk D
around an edge of Σ(M) connected to p through an arc. By Lemma 2.7.20, this immersed
disk is determined up to regular homotopy and a possible flip by γ. If ord(γ) 6= 2, then the
orientation in which γ is traversing ∂D is fixed. Hence, the framing on the arc connecting
to p is fixed up to an even numbers of full-twists to match the orientation on the surface
F1 \Σ(F1). If ord(γ) = 2, then we can apply a flip to the disk, corresponding to a half-twist
of a 1-handle containing the arc connecting to p or a full-twist around the loop γ, see Figure
2.12.

p

γs

s

p

γs

s

Figure 2.12: Flipping an orbifold 0-handle of order two.

Notice that we obtain all regular homotopy classes of immersions t1 : (F1, p) → (M, p)
by full-twists on 1-handles and half-twists on 1-handles connecting to an orbifold 0-handle
of order 2. The half-twist flips the orbifold 0-handle. If there is more than one 1-handle
connecting the orbifold 0-handle, we first slide all other 1-handles off the orbifold 0-handle
onto the 1-handle we half-twist and then slide them back on.

Lemma 2.7.24. Let F1 be the 1-skeleton of a good, connected, orientable 2-orbifold. Let
(M, p) be a spherical orbifold as defined in the beginning of the section. Let τ : πorb1 (F1, p)→
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πorb1 (M, p) be a group homomorphism mapping each ssl γs to a msl with ord(τ(γs)) = ord(γs).
Then regular homotopy classes of immersions t1 : (F1, p) → (M, p) inducing τ are in (non-
canonical) 1-1 correspondence to morphisms f : πorb1 (F1, p)→ Z/2.

Proof. An immersion t1 : (F1, p)→ (M, p) exists by Lemma 2.7.6 and the resulting homotopy
class of (F1 \ Σ(F1), p) → (M, p) is uniquely determined by Lemma 2.7.23. The above
comments describe how to obtain all regular homotopy classes.
To establish the correspondence, fix one immersion t1 : (F1, p) → (M, p). Given another
immersion t′1 and a loop γ ∈ πorb1 (F1, p), we get two immersed ribbons in M representing
the same πorb1 (F1, p), hence by Theorem 2.7.16, we get an element in Z/2 depending on the
number of full twists needed to relate them. This is the image of γ under f for t′1.
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2.7.7 Main Theorem for Immersions

Let M = S3/Γ, Γ ⊂ SO(4), be a spherical orbifold with base point p. Let τ : πorb1 (F, p) →
πorb1 (M, p) be a group homomorphism mapping each ssl γs to a msl with ord(τ(γs)) = ord(γs).

Fix an immersion t1 : (F1, p)→ (M, p) of the 1-skeleton of F inducing τ . This is possible by
Lemma 2.7.6.

Pick a connected component C ⊂ ∂F1 of the boundary of the 1-skeleton F1. In πorb1 (F, p),
C is trivial because it spans a 2-cell D in the handle decomposition. The immersion
t1 : (F1, p) → (M, p) sends a collar neighborhood of C to an immersed ribbon K that is
homotopically trivial because C is homotopically trivial in F and τ is a group homomor-
phism. The immersed ribbon K has a Z/2-framing invariant by Theorem 2.7.16. Assign
f(K) to the corresponding 2-handle D in the cellular cohomology.

To be more precise, recall that the handle decomposition gives a cellular cochain complex of
X(F ) with Z/2 coefficients:

0 (Z/2)r

· · · C3
CW (X(F );Z/2)oo

∼=

OO

C2
CW (X(F );Z/2)oo

∼=

OO

C1
CW (X(F );Z/2)oo · · ·oo

where r is the number of 2-handles. Define c(t1) ∈ C2
CW (X(F );Z/2) by

c(t1) : CCW
2 (X(F );Z/2) → Z/2

2-handle D 7→ framing invariant f(K)

Definition 2.7.25. Let (M, p), (F, p), and τ as above. The regular homotopy framing
invariant of an immersion t1 : (F1, p) → (M, p) of the 1-skeleton inducing τ is c(t1) ∈
CCW

2 (X(F );Z/2).

Lemma 2.7.26. The immersion t1 : (F1, p)→ (M, p) extends to the 2-orbifold F if and only
if c(t1) ∈ C2

CW (X(F );Z/2) is zero.

Proof. A collar neighborhood of the boundary of a 2-cell D in F yields an immersed ribbon
in M under t1. By Theorem 2.7.16, this immersed ribbon bounds an immersed disk if and
only if c(t1)(D) is zero for this 2-cell. We need these immersed disks to map the 2-cells of F
into M extending t1 such that it becomes an immersion on the boundary of the 2-cell.

Definition 2.7.27. Let (M, p), (F, p) and τ as above. The cohomology obstruction of an
immersion t1 : (F1, p)→ (M, p) inducing τ to extend to an immersion after full-twists is the
class [c(t1)] ∈ H2(X(F );Z/2) represented by c(t1).
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Lemma 2.7.28. The cohomology class [c(t1)] ∈ H2(X(F );Z/2) stays invariant if we apply
full twists to the 1-handles of the immersion t1 : (F1, p) → (M, p). In particular, we can
change c(t1) ∈ C2

CW (X(F );Z/2) to zero by applying full twists to the 1-handles if and only
if [c(t1)] is zero in H2(X(F );Z/2).

Proof. If we perform a full-twist on a 1-handle, it changes the framing invariant f for the
2-handles that touch the 1-handle. This relationship also defines the coboundary operator
δ : C1

CW (X(F );Z/2)→ C2
CW (X(F );Z/2). Hence, full-twists of 1-handles change c(t1) by an

image of δ and hence leave [c(t1)] invariant.

Lemma 2.7.29. If there is no ssl γs ∈ πorb1 (F, p) with ord(τ(γs))) = 2, then the cohomology
class [c(t1)] ∈ H2(X(F );Z/2) does not depend on the immersion t1 : (F1, p) → (M, p). We
will write [c(τ)] in this case.

Proof. Recall that in this case all regular homotopy classes of immersions t1 : (F1, p) →
(M, p) inducing τ are obtained from full-twists, as shown in the comments to and proof of
Lemma 2.7.24.

Theorem 2.7.30 (Main Theorem for Immersions). Let (F, p) be a good, connected, ori-
entable 2-orbifold and (M, p) a spherical 3-orbifold as defined above. Let τ : πorb1 (F, p) →
πorb1 (M, p) be a group homomorphism mapping each ssl γs to a msl with ord(τ(γs)) = ord(γs).

1. Assume there is no ssl γs ∈ πorb1 (F, p) such that ord(τ(γs)) = 2. Then an immersion
t : (F, p)→ (M, p) inducing τ exists if and only if [c(τ)] ∈ H2(X(F );Z/2) is zero.

2. Assume there is a ssl γs ∈ πorb1 (F, p) such that ord(τ(γs)) = 2. Then an immersion
t : (F, p)→ (M, p) inducing τ exists.

Proof. By Lemma 2.7.6, an immersion t1 : (F1, p)→ (M, p) of the 1-skeleton F1 exists.
Case 1. By Lemma 2.7.29, the class [c(t1)] is independent of the choice of the immersion
of the 1-skeleton. By Lemma 2.7.28, we can modify this immersion of the 1-skeleton by
full-twists making c(t1) ∈ C2

CW (X(F );Z/2) vanish if and only if [c(t1)] = 0. By Lemma
2.7.26, we can extend an immersion of 1-skeleton to F if and only if c(t1) = 0.

Case 2. . If [c(t1)] = 0, continue as in the previous case. Otherwise, alter the immersion
of the 1-skeleton by picking the orbifold 0-handle corresponding to a γs with ord(τ(γs)) = 2
and flipping it, twisting the connecting 1-handle by a half-twist. The new immersion of the
1-skeleton F1 induces the same τ . However, [c(t1)] has changed. To see this, lift γs to the
manifold cover as shown in Figure 2.13.
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lifted to manifold lifted to manifold

Figure 2.13: Framing change when flipping orbifold 0-handle.

2.7.8 Regular Homotopy Classes of Immersions

Consider a 2-orbifold (F, p) and a spherical 3-orbifold (M, p) as defined at the beginning of
the previous section. Let τ : πorb1 (F, p)→ πorb1 (M, p) be a group homomorphism.

Let (F1, p) be the 1-skeleton of (F, p). Let t1 : (F1, p) → (M, p) be an immersion. Recall
Definition 2.7.25 of the regular homotopy framing invariant c(t1) ∈ CCW

2 (X(F );Z/2). If
c(t1) = 0, then t1 can be extended to an immersion of (F, p) and yields:

Lemma 2.7.31. There is a 1-1 correspondence between

• regular homotopy classes of immersions t1 : (F1, p)→ (M, p) inducing τ with c(t1) = 0

• regular homotopy classes of immersions t : (F, p)→ (M, p) inducing τ .

Proof. If two immersions t : (F, p) → (M, p) are regular homotpic, so are their restrictions
to the 1-skeleton.
Theorem 2.7.16 implies that there is only one regular homotopy class of immersed ribbons
in S3 bounding immersed disks. Furthermore, any two immersed disks are also regular
homotopic. Hence, if possible, an immersion t1 : (F1, p)→ (M, p) extends to F uniquely up
to regular homotopy.

Theorem 2.7.32. Let (F, p) be a good, connected, orientable 2-orbifold. Let (M, p) be a
spherical orbifold as defined in the beginning of the previous section. Let τ : πorb1 (F, p) →
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πorb1 (M, p) be a group homomorphism mapping each ssl γs to a msl with ord(τ(γs)) = ord(γs).
Let g be the genus of X(F ) and k the number of order two singular points in F . Then, one
of the following cases holds:

• k = 0 and there are zero regular homotopy classes immersion t : (F, p) → (M, p)
inducing τ .

• k = 0 and there are 22g classes.

• k > 0 and there are 22g+k−1 classes.

These classes form an affine subspace of the g + k-dimensional Z/2-vector space of group
homomorphisms f : πorb1 (F, p)→ Z/2.

Remark 2.7.33. This theorem is the orbifold version of results about enumerating the
regular homotopy classes of immersions of surfaces into R3 due to James and Thomas [JT66]
using methods of Hirsch and Smale [Hir59]. Hass and Hughes give explicit constructions in
[HH85].

Proof. Use a standard handle decomposition of (F, p). By Lemma 2.7.24, all regular homo-
topy classes of immersions t1 : (F1, p) → (M, p) are obtained by half-twists of a 1-handle
connecting to an order two orbifold 0-handle and full-twists of 1-handles not connecting to
orbifold 0-handles. The half-twists change c(t1), the full-twists do not. Hence, if there is
no order two singular point in (F, p), all regular homotopy classes have the same c(t1). If
there is an order two singular point, then exactly half of the regular homotopy classes have
c(t1) = 0.
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2.8 Theory about Embeddings

Let (F, p) and (M, p) be good, connected, orientable orbifolds with base points of dimension
2 and 3, respectively. Let τ : πorb1 (F, p)→ πorb1 (M, p) be a group homomorphism.

For 3-orbifolds (M, p) that are quotients of E3 by a finite group of symmetries, the main
theorem in Section 2.8.2 classifies all embeddings of a good, connected, orientable 2-orbifold
(F, p) into (M, p) up to regular homotopy and choices of identifying the 2-orbifold with itself.
A corollary of this theorem in Section 2.8.5 lists all τ : πorb1 (F, p) → πorb1 (M, p) that can be
realized by an embedding (F, p)→ (M, p).

We prove the main theorem using a modified version of the Haken theory of normal surfaces.
The method can be used to derive results similar to the main theorem for a much larger
class of target 3-orbifolds.

We follow the notation and definitions used in [Mat07, Section 3]. A normal surface in a
3-manifold is defined with respect to a triangulation of the 3-manifold. A fundamental result
of the Haken theory of normal surfaces is that the normal surfaces are in correspondence
to non-negative integral solutions of a system of equations that can be derived from the
triangulation. There exists a minimal set of these solutions that spans all solutions. This
set is finit and can be computed effectively. The corresponding surfaces are referred to as
fundamental surfaces.

Given a triangulation of a 3-manifold, “interesting” surfaces are isotopic to a normal sur-
face and can be algorithmically found in this frame work. Here, the notion “interesting”
depends on the application, for example, splitting surfaces to detect splittable links. The
normalization procedure is a general technique to prove that an interesting surface is isotopic
to a normal surface. For example, any incompressible surface in an irreducible 3-manifold is
isotopic to a normal surface [Mat07, Proposition 3.3.24].

In Section 2.8.1, we extend the notion of normal surface by adding beads and tunnels and
apply it to orbifolds. We show that every (not necessarily incompressible) embedded 2-
orbifold in a 3-orbifold is isotopic to an “altered” normal surface. Using this fact, we can
enlist all fundamental surfaces in the 3-orbifold, and then derive results about all embedded
3-orbifolds if the 3-orbifold is simple enough. We do this explicitly for S3/B in Section 2.8.3,
thus proving the main theorem.
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2.8.1 “Altered” Normal Surfaces and the Normalization Proce-
dure

Let M be a good, closed, connected, orientable 3-orbifold with a triangulation of the un-
derlying topological space X(M) such that the singular graph Σ(M) is contained in the
1-skeleton. An embedded 2-orbifold F ⊂M is called a normal 2-orbifold if X(F ) is a normal
surface.

Given an embedded 2-orbifold F ⊂ M , we can perform the normalization moves N1 to N4

as described in [Mat07, Section 3.3]. We ignore the orbifold structure during the process
and perform the procedure on the underlying topological space X(F ). By [Mat07, Theorem
3.3.21], this process terminates after finitely many steps and results in a normal 2-orbifold.
Notice that N2 potentially changes the intersection of X(F ) with Σ(M) thus changing the
orbifold structure of F . Also, the normalization move N1 can change the topology of X(F )
in a non-trivial way if F is not incompressible.

We alter the definition of normal surface and the normalization procedure to account for
these cases.

Adding a tunnel amounts to surgery along a 3-dimensional 1-handle, see Figure 2.14:

Definition 2.8.1. Let F ⊂ M be an embedded 2-orbifold. Let [0, 1] × D2 ⊂ M \ Σ(M) be
an embedded solid cylinder intersecting F in ∂[0, 1]×D2. Remove ∂[0, 1]×D2 from F and
add [0, 1]× ∂D2 to F . We call this surgery “adding a tunnel” to F .

Definition 2.8.2. Let F ⊂ M be an embedded 2-orbifold. Let B3 ⊂ X(M) \ X(F ) be an
embedded ball intersecting Σ(M) in an interval. Add a tunnel to F ∪ ∂B3 connecting F to
∂B3. We call this surgery “adding a bead” to F .

Figure 2.14: Tunnels and beads.

Adding a bead does not change the isotopy class of X(F ) → X(M) but adds two singular
points to F .
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Definition 2.8.3. An embedded 2-orbifold F ′ ⊂M is an altered normal surface if it can be
obtained from a normal 2-orbifold F ⊂ M by consecutively adding beads and tunnels with
ends lying on the normal surface F .

Theorem 2.8.4. Every connected, orientable, embedded 2-orbifold F ⊂M is isotopic to an
altered normal surface or an altered 2-sphere bounding a ball.

Proof. We perform the normalization procedure to obtain a normal surface, modifying the
moves in [Mat07, Section 3.3] to keep track of solid cylinders and balls as extra data. We use
those solid cylinders and balls to add tunnels and beads yielding an altered normal surface
isotopic to F :

N1: Compress F along D and add a solid cylinder for a tunnel as shown in the following
picture:

Notice that D might intersect other solid cylinders from previous normalization moves.
If ∂D intersects such a solid cylinder, we can isotope the cylinder to avoid ∂D (see
picture below). If the interior of D intersects a solid cylinder, then the cylinder does
not touch ∂D because the corresponding altered normal surface is embedded. Hence,
the cylinder intersects D in disks lying in the interior of D. If the cylinder intersects
D in a circle compressible in the cylinder, we can isotope it to avoid D:
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If the previous cylinder intersects D transversely, we obtain nested cylinders, i.e., solid
cylinders modeled on “longer” solid cylinders sitting in “thicker” solid cylinders:

N2: After isotoping F to avoid the edge e, we add a bead so that the altered normal surface
still intersects Σ(M) if Σ(M) contains e:

Notice that D might intersect some solid cylinders introduced at earlier steps. These
cylinders have to be isotoped to lie within the bead:

D might also intersect some beads, introducing nested beads.
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N3: Since we started with a connected 2-orbifold, the 2-sphere has to be connected to
another component of F by some cylinder (otherwise the normalization procedure has
already terminated in an altered 2-sphere). The solid cylinder and the ball bounded
by the 2-sphere form a ball in X(M) \ Σ(M). Use this ball for an ambient isotopy
turning the 2-sphere into the other end of the cylinder:

The 2-sphere disappears from the normal surface. Other cylinders connecting to the
2-sphere now connect to F .

N4: Same as N3.

Remark 2.8.5. The procedure might result in convoluted nested beads and tunnels, see
Figure 2.15.

Figure 2.15: Nested beads and tunnels.

2.8.2 Main Theorem for Embeddings

Let B ⊂ SO(3) be a finite subgroup of SO(3) ⊂ SO(4). Let M = S3/B. The group B is a
either a cyclic group or a triangle group [p, q]+, see Section 2.2.1 and Table 2.1. In either
case, X(M) ∼= S3.
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Figure 2.16: Prototypical embedded orbifold in S3/B with B non-cyclic. In the left picture,
the surface (F, p) is obtained by adding tunnels (Definition 2.8.1) and beads (Definition 2.8.2)
to a sphere around a trivalent vertex of Σ(M). In the right picture, we start with a small
sphere around a generic point in M .

p

S

Figure 2.17: Prototypical embedded orbifold in S3/B with B cyclic.



100

Theorem 2.8.6 (Main Theorem for Embeddings). Let M = S3/B be the quotient orbifold
where B is a finite subgroup of SO(3) ⊂ SO(4) with base point p. Every embedded orientable
2-orbifold (F, p) ⊂ (M, p) is regular homotopic to one of the following forms:

• If B is not cyclic, adding tunnels and beads to a sphere around a trivalent vertex of
Σ(M) (left picture in Figure 2.16).

• Adding tunnels and beads to a small sphere around a generic point in M (right picture
in Figure 2.16 if B is not cyclic; Figure 2.17 if B is cyclic).

This is proven in the next section.

Remark 2.8.7. Notice that each bead intersects an edge of Σ(M) twice. Assume that
B = [p, q]+ is not cyclic. Then the numbers of singular points of (F, p) lying on the axis for
R, for S, and for T are either all odd or all even (left, respectively, right picture in Figure
2.16). We can detect the axis a singular point is lying on by determining the conjugacy class
of the image of the corresponding ssl γs under τ : πorb1 (F, p) → πorb1 (M, p) ∼= B induced by
(F, p) ⊂ (M, p).
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2.8.3 Proof of the Main Theorem for Embeddings

We want to find all orientable, connected, embedded 2-orbifolds in M = S3/B up to regular
homotopy.

B non-cyclic

If B is not cyclic, we triangulate S3 by four tetrahedra: construct a hexahedron by gluing
two tetrahedra along one face, glue two hexahedron along their boundaries. The trivalent
graph Σ(M) embeds as follows:

2

2

p

p

q

q

Using the 3-manifold software Regina [Bur09], we see that every fundamental surface is
either a vertex linked or edge linked sphere, i.e., the boundary of a regular neighborhood of
a vertex or edge in the 1-skeleton. Furthermore, two spheres linked to edges sharing a vertex
do not have compatible quad types. This implies that every normal surface is just a disjoint
union of fundamental spheres in X(M). In order to enumerate all embedded surfaces, we can
ignore most of these spheres by replacing them by a bead or by applying a regular homotopy
so that they go away. For example, a sphere linked around a vertex other than the trivalent
vertices of Σ(M) can be replaced by a bead. Similarly, an edge linked sphere can be replaced
by two beads if the edge is not part of Σ(M).

Hence, we are left with an “altered” normal surface that consists of tunnels and beads added
to either:

• a sphere not intersecting Σ(M) (the case of an empty normal surface) or

• a bunch of spheres around one of the trivalent vertices of Σ(M).

In the latter case, there must be tunnels connecting the spheres. If there are nested tunnels,
then there is an outermost tunnel, and we can turn the two spheres it connects into three
beads, as shown in Figure 2.18.
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p

p

Figure 2.18: Two spheres around the trivalent vertex isotoped to three beads.

Thus we can successively reduce the number of spheres around the trivalent vertex by two
until there is only one left. We can push all tunnels and beads outside and avoid them to
be nested by a regular homotopy. Hence, up to regular homotopy, every embedded surface
is of one of the forms shown in Figure 2.16.

B cyclic

Notice that Σ(M) is a circle and can be embedded into the same triangulation of S3 ∼= X(M).
Using the same arguments, every embedded surface is, up to regular homotopy, of the form
shown in Figure 2.17.

2.8.4 Identifying a Prototypical Embedded 2-Orbifold with the
Standard Handle Decomposition

In this section, we explicitly fix one standard handle decomposition of an embedded ori-
entable 2-orbifold (F, p) ⊂ (M, p) as given in Theorem 2.8.6 and compute the induced group
homomorphism τ : πorb1 (F, p) → πorb1 (M, p). τ is given in the generators of the standard
presentation of πorb1 (F, p) in Section 2.4.1. Here, πorb1 (M, p) is isomorphic to a cyclic group
or a triangle group B = [p, q]+ and is presented as in Equation 2.1.

Vice versa, we can embed (F, p) into (M, p) using Figure 2.16 or 2.17 if a 2-orbifold (F, p) has
a standard handle decomposition such that τ is of one of the forms listed here with respect
to the generators of πorb1 (M, p) coming from that standard handle decomposition. Section
2.8.5 discusses this in detail.
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B non-cyclic, odd number of singular points

Assume (F, p) has an odd number k = 2m+ 3 of singular points. A picture of the embedded
surface is given on the left of Figure 2.16. There are m beads. Label the singular points such
that σ2j−1 and σ2j are on the same bead and that σ2m+1, σ2m+2, and σ2m+3 lie on the sphere
around the trivalent vertex of Σ(M). Then, we can identify the embedded surface with the
surface in Figure 2.7 such that

τ(σ2j−1) = τ(σ2j)
−1 = conjugate of R±1, S±1, T±1

τ(σ2m+1) = R

τ(σ2m+2) = S

τ(σ2m+3) = T

τ(αi) = id

(2.6)

where i = 1, . . . , g and j = 1, . . . ,m. Notice that we can warp the beads and tunnels so that
τ(βi) can take arbitrary values and τ(σ2j−1) is an arbitrary conjugate of R±1, S±1, or T±1.

If we reverse the orientation of (F, p), we get:

τ(σ2j−1) = τ(σ2j)
−1 = conjugate of R±1, S±1, T±1

τ(σ2m+1) = T−1

τ(σ2m+2) = S−1

τ(σ2m+3) = R−1

τ(αi) = id

(2.7)

B non-cyclic, even number of singular points

Assume (F, p) has an even number k = 2m of singular points. Then, we can identify the
embedded surface in the right picture of Figure 2.16 with the surface in Figure 2.7 such that

τ(σ2j−1) = τ(σ2j)
−1 = conjugate of R±1, S±1, T±1

τ(αi) = id
(2.8)

where i, j as above and the same comments apply.
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B cyclic

The surface (F, p) has to have an even number k = 2m of singular points. Then, we can
identify the embedded surface in Figure 2.7 with the surface in Figure 2.7 such that

τ(σ2j−1) = τ(σ2j)
−1 = S±1

τ(αi) = id
(2.9)

where i, j as above and the same comments apply.

2.8.5 Main Theorem for Embeddings Revisted

Given τ : πorb1 (F, p)→ πorb1 (M, p) in standard generators, the goal of this section is to decide
whether it is induced by an embedding by letting the mapping class group act on τ and
check the conditions in Section 2.8.4. This is stated Theorem 2.8.10 at the end.

Before we state the following corollary to the Main Theorem 2.8.6 for Embeddings, we want
to discuss a technical subtlety even though it turns out that we can ignore it: two standard
presentations of πorb1 (F, p) can be different if we permute singular points of different orders

thus changing the relation σ
ord(sj)
j = id. This means that, even if the genus and the number

of singular points of a given order are the same for two 2-orbifolds, we might not be able to
identify a standard handle decomposition of one 2-orbifold with one of the other 2-orbifold.
A priori, we need to check that a singular point labeled sj in one 2-orbifold has the same
order as the singular point with the same label in the other 2-orbifold.

However, assuming τ sends ssl’s to ssl’s of the same order, this check becomes unnecessary,
i.e., if we test the equations in Section 2.8.4 for τ , it follows that the singular points in (F, p)
have the right orders automatically, also see Remark 2.11.1.

Corollary 2.8.8. Let (F, p) be a good, connected, orientable 2-orbifold of genus g and with
k singular points. Let M = S3/B be the quotient orbifold where B is a finite subgroup
of SO(3) ⊂ SO(4) with base point p. Let τ : πorb1 (F, p) → πorb1 (M, p) ∼= B be a group
homomorphism mapping ssl’s to ssl’s of the same order. Then τ is induced by an embedding
(F, p) → (M, p) if and only if there is a standard handle decomposition of (F, p) such that
expressing τ in the resulting standard generators of πorb1 (F, p) is of one of the forms listed in
Section 2.8.4.

Looking forward, the algorithm in Section 2.11.1 computes the τ -tuple, i.e., the tuple of the
images of the standard generators of πorb1 (F, p). To decide whether an embedding exists, run
the algorithm with all possible choices of standard handle decomposition and check whether
a τ -tuple is of one of the forms listed in Section 2.8.4.
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Alternatively, fix one standard handle decomposition and let the mapping class group act on
the τ -tuple. We choose the mapping class group of the punctured surface (X(F ) \ Σ(F ), p)
so that we can permute the singular points arbitrarily.

To state this in a theorem, define a forgetful functor from 2-orbifolds to punctured surfaces
(F, p) 7→ (X(F ) \Σ(F ), p) that forgets the order of each singular point. This functor carries
τ : πorb1 (F, p) → B to τ̃ : π1(X(F ) \ Σ(F ), p) → B. Assume we have checked that τ sends
ssl’s to ssl’s of the same order. Then, having applied the forgetful functor and thus knowing
only (X(F ) \Σ(F ), p) and τ̃ , we can still reconstruct the order of each singular point (F, p)
and thus we have effectively lost no information.

We can rewrite Corollary 2.8.8.

Corollary 2.8.9. Let (F, p), (M, p), and τ as in Corollary 2.8.8. Then τ is induced by an
embedding (F, p)→ (M, p) if and only if there is a standard handle decomposition of (X(F )\
Σ(F ), p) such that expressing τ̃ in the resulting standard generators of πorb1 (X(F ) \Σ(F ), p)
is of one of the forms listed in Section 2.8.4.

An element φ in the mapping class group Mod(X(F ) \ Σ(F ), p) of the punctured surface
induces a group automorphism

φ∗ : π1(X(F ) \ Σ(F ), p)→ π1(X(F ) \ Σ(F ), p)

and hence acts on τ̃ .

Theorem 2.8.10. Let (F, p), (M, p), and τ as in Corollary 2.8.8. Pick a standard handle
decomposition and write π1(X(F ) \ Σ(F ), p) in standard generators. Then τ is induced by
an embedding (F, p) → (M, p) if and only if there is an element φ ∈ Mod(X(F ) \ Σ(F ), p)
such that τ̃ ◦ φ∗ : π1(X(F ) \ Σ(F ), p)→ B is of one of the forms listed in Section 2.8.4.

2.8.6 Mapping Class Group of a Punctured Surface

We follow the notation used in [FM]. Another classical reference for mapping class groups
is [Bir75].

Let Mod(Sg,n) denote the mapping class group of a genus g surface with n marked points,
respectively, punctures. This group consists of equivalence classes of orientation-preserving
homeomorphisms of the surface taking the marked points set-wise to itself. We regard two
homeomorphisms equal if there is an isotopy between them fixing the marked points set-wise.

Given a non-separating curve in Sg,n, we can perform a Dehn twist about the curve and
obtain an element in the mapping class group.
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If a curve bounds a disk in Sg,n containing two marked points, we can perform a half twist
about the curve and rotate the disk to exchange the two marked points. We mark such a
curve by 1

2
.

Figure 2.19: Generators of the mapping class group of a punctured surface.

Theorem 2.8.11. The mapping class group Mod(Sg,n) is generated by Dehn twists and half
twists about the curves shown in Figure 2.19.

Proof. Let PMod(Sg,n) denote the pure mapping class group where the homeomorphisms
and isotopies fix the marked points point-wise.

The push map
Push : π1(Sg,n, x)→ PMod(Sg,n+1)

is defined in [FM, Section 4.2.1] and can be though of as “stick[ing] our finger on x and
push[ing] x along α, dragging the rest of the surface along as we go” where α ∈ π1(Sg,n, x).

There is a forgetful map Mod(Sg,n)→ Mod(Sg,0) = PMod(Sg,0) ignoring the marked points.
The Dehn twists in Figure 2.19 include the Lickorish generators in [FM, Theorem 4.13], thus
they generate PMod(Sg,0) .

By applying a Dehn twist about A and the reverse Dehn twist about B, we can push the
most right marked point x once around, thus realizing one standard generator of π1(Sg,0, x).
Conjugation by appropriate Dehn twists allows realizing all standard generators of π1(Sg,0, x)
as described in detail in the proof of [FM, Theorem 4.13]. Thus, we have shown that we
generate the image of the push map Push : π1(Sg,0, x)→ PMod(Sg,1).

By the Birman exact sequence [FM, Theorem 4.6] for n = 0

1→ π1(Sg,n, x)→ PMod(Sg,n+1)→ PMod(Sg,n)→ 1,

this proves that we generate PMod(Sg,1).
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We want to use the Birman exact sequence inductively to show that the twists are enough
to generate PMod(Sg,n+1). This means we need to realize the image of Push : π1(Sg,n, x)→
PMod(Sg,n+1) by twists. The half twists can push a marked point x arbitrarily around the
other marked points, thus realizing Push for those loops around marked points that avoid
the handles. Recall that we described earlier how Dehn twists realize the push map for the
most right marked point. Conjugate those Dehn twists with half twists interchanging the
point x with the most right point. This finishes the induction step.

The half twists generate all permutations of the marked points. Hence, the following short
exact sequence in [FM, Chapter 4] implies that all twists together generate Mod(Sg,n):

1→ PMod(Sg,n)→ Mod(Sg,n)→ Σn → 1.

This is also discussed in [FM, Section 4.4.4] and a similar picture [FM, Figure 4.10] is given.

2.8.7 Generalization to Other 3-Orbifolds

Results similar to Theorem 2.8.6 respectively 2.8.10 can be derived for a larger class of
3-orbifolds. Given a 2-orbifold F and a 3-orbifold M , compute all normal 2-orbifolds in
M whose genus and number of singular points is less than those of F , then add tunnels
and beads to match genus and singular point count. A problem might arise if tori appear
as fundamental surfaces because then there are infinitely many normal surfaces of the same
gender. In this case, adding a fundamental tori performs surgery on the surface, not changing
the topology of the surface but the way the surface is embedded and thus the image of the
surface in the fundamental group of M . For simple enough cases, this can still be computed
explicitly. Another problem might arise if a fundamental surface splits the 3-orbifold into two
connected components, each component having a different image in the fundamental group
of M . In this case, the first tunnel can live in only one of the two connected components,
the second tunnel can nest through the second tunnel, making the enumeration difficult.

In some cases though, the enumeration is still feasible. Consider, for example, the quotients
of S3 by the orientation-preserving subgroup of a Coxeter reflection group, i.e., the symmetry
group of the 5-, 8-, 24-, or 120-cell in S3. The resulting 3-orbifold quotient is topologically S3

and the singular locus is the 1-skeleton of a tetrahedron. All fundamental surfaces are again
vertex- and edge-linked spheres. And even though an edge-linked sphere separates some of
the vertex-linked sphere from some of the other vertex-linked spheres, the enumeration of
all possible tunnels is still feasible.

Dunbar classifies the non-hyperbolic geometric 3-orbifolds [Dun88].
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2.9 Overview of the Algorithms

Let F be an orientable regular map presented as described in Section 2.9.1. We want to find
all (H,B, η)-triples consisting of a subgroup H ⊂ G = Aut+

reg(F ), a subgroup B ⊂ SO(3)
of symmetries of Euclidean 3-space, and an isomorphism η : H ∼= B such that an (H,B, η)-
equivariant morphism, immersion, respectively, embedding exists. The algorithm has two
steps, the first one is described in Section 2.10, the second one in Section 2.11.

Input Regular map F .

Output (H,B, η)-triples up to equivalence such that an (H,B, η)-
equivariant morphism, immersion, or embedding exists.

Algorithm

1. Find all (H,B, η)-triples up to equivalence, see this Section 2.10.

2. For each (H,B, η)-triple:

(a) Is there an (H,B, η)-equivariant morphism, immersion, respectively, em-
bedding? See Section 2.11.

(b) If yes, emit (H,B, η)-triple.

2.9.1 Presentation of a Regular Map

When we write “Input: Regular map F”, we mean a finite presentation of G = Aut+
reg(F )

in the generators R and S as defined in Section 2.2.1.

If F is reflexible, then Autreg(F ) is given as a finite presentation in R, S, and C and G is
presented as the subgroup of Aut+

reg(F ) generated by R and S.

Conder and Dobcsianyi give such presentations of Autreg(F ) for regular maps F up to genus
101 in [Con09] and also provide parsable text files [Con06b, Con06a]. Notice that Conder
and Dobcsianyi use T for the reflection C. We replace T by C in the text files they provide,
because we already use T to denote RS.
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2.10 Algorithm to Find All (H,B, η)-triples

Recall the definition of (H,B, η)-equivariant morphism and the notion of equivalence in
Section 2.5. In this section, ignore the underlying topological mapping of an equivariant
morphism and just maintain the parts of the definitions involving the groups.

Given a regular map F , Table 2.2 shows an algorithm listing all valid (H,B, η)-triples up to
equivalence.

In a naive implementation, produce all triples (H,B, η) and let elements i ∈ G = Autreg(F )
and c ∈ Isom(E3) act on the space of all triples (H,B, η) as described in Definition 2.5.2.
Pick a representative of each orbit under this action.

To refine the implementation, notice that this action can take H to any conjugate of H in
Autreg(F ), similarly for B. Hence, to list all (H,B, η) up to equivalence, we only need to pick
one representative for each conjugacy class of subgroups H ⊂ Aut+

reg(F ) and B ⊂ Isom+(E3).

Fix an H and an isomorphic B. An element i ∈ G = Autreg(F ) can still act on a triple
(H,B, η) by changing η if i is in the normalizer NG(H) of H in G. Similarly, an element c
can still act on a triple (H,B, η) if it is in the normalizer NIsom(E3)(B) of B in Isom(E3).

For the implementation, we present B as a normal subgroup of a triangle group D = [p, q] ⊂
Isom(E3) presented by Equation 2.2. Hence, D acts on B by conjugation and therefore on
η in an (H,B, η)-triple. We choose D such that the conjugation action by D is equal to the
conjugation action by NIsom(E3)(B). Table 2.1 shows the presentation of B and D. If B is
not cyclic, D is equal to NIsom(E3)(B). If B is cyclic, NIsom(E3)(B) is infinite.

Remark 2.10.1. Notice that for the tetrahedral, octahedral, and icosahedral group, at least
half of the automorphisms are inner automorphisms. This means that step A and step B
cancel each other in a lot of cases, for example, if F is reflexible, and the algorithm could be
simplified. However, we avoid special cases and implement the algorithm in its generality as
in Table 2.2.
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Table 2.1: Presentation of the target symmetry groups B ⊂ Isom+(E3) [Cox69, Table III,
page 413] as subgroups of a triangle group D.

Spatial group B Presentation1 of B D

tetrahedral [3, 3]+ 〈D.R,D.S〉 [3, 3]
octahedral [3, 4]+ 〈D.R,D.S〉 [3, 4]
icosahedral [3, 5]+ 〈D.R,D.S〉 [3, 5]
dihedral2 [2, n]+ 〈D.R,D.S2〉 [2, 2n]

cyclic2 Z/n 〈D.S〉 [2, n]

1 D.x denotes the generator x of the finitely presented group D.
2 We choose n to be the order of an element in H.
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Table 2.2: Algorithm to enumerate all (H,B, η)-triples up to the equivalence defined in
Section 2.5.

Input Regular map F .

Output A representative for each equivalence class of (H,B, η).

Algorithm

1. To speed up computation, find permutation representations of

G = Autreg(F )+ ⊂ Autreg(F ) and Autreg(F ).

2. For a representative H of each conjugacy class of subgroups of Autreg(F ):

If H ⊂ Aut+
reg(F ):

(a) For each symmetry group B ⊂ SO(3) ∼= Isom+(E3, 0) from Table 2.1:

i. Find an isomorphism η′ : H ∼= B.
If η′ exists:

A. Find all isomorphisms I = {η : H ∼= B} by computing

I = {η′ ◦ h : h ∈ Aut(H)}.

B. Compute (where D is from Table 2.1)

I ′ = Conjug. action by D \
I / Conjug. action by NG(H).

C. For a representative η of each double coset in I ′:

Emit the triple (H,B, η).
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2.11 Algorithm to Decide the Existence of (H,B, η)-

Equivariant Morphism, Immersion, and Embed-

ding

Input Regular map F , (H,B, η)-triple.

Output Three Booleans: (H,B, η)-equivariant morphism, immersion,
respectively, embedding exists.

Algorithm

1. Compute τ -tuple, see Section 2.11.1.

2. Apply decision tree in Figure 2.20.

Section 2.6 translates the question about the existence of equivariant morphisms into the
orbifold language. Given a regular map F and an (H,B, η)-triple, recall that the regular
covering space (F, p)→ (F/H, p) is specified by a holonomy

h : πorb1 (F/H, p)→ H.

The holonomy for (S3, p)→ (S3/B, p) is an isomorphism:

πorb1 (S3/B, p) ∼= B.

Lemma 2.6.1 translates the original question into the question whether

τ = η ◦ h

τ : πorb1 (F/H, p)→ B ∼= πorb1 (S3/B, p)

is induced by an orbifold morphism, immersion, or embedding.

We compute τ in the generators of a standard presentation of πorb1 (F/H, p) as described in
Section 2.4.1. We encode this in the τ -tuple:

(τ(σ1), . . . , τ(σk); τ(α1), τ(β1), . . . , τ(αg), τ(βg)).

The algorithm to compute the τ -tuple is described in Section 2.11.1. Given the τ -tuple, we
apply the decision tree in Figure 2.20, the steps are described in the following sections.

Notice that for Steps 1, 2, 3, 5, and 6 in the decision tree, we only need to compute the
conjugacy classes of the images of the ssl’s. This can be done without implementing all of
Section 2.11.1 using Remark 2.11.2.
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Step 1
Does every sl go to sl?

No
Immersion

No
Embedding

No
Mapping

Step 2
Does every ssl go to msl?

No

No Yes

Step 3
Is there ssl of order 2?

No

Yes

Step 4
Is the cohomology obstruction zero?

No
Immersion

No

Step 6
Counts of singular points match mod 2?

Immersion

No Yes

Step 7
Suitable element in MCG?

NoNo
Embedding

Yes
Mapping

Yes

No
Embedding

Step 5
Does every ssl go to ssl?

No Yes

Yes
Embedding

Figure 2.20: Decision tree for a given (H,B, η)-triple.
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2.11.1 Computing the τ-Tuple

This algorithm identifies the orbifold (F/H, p) with a standard handle decomposition as
described in Section 2.4.1. This gives a presentation of πorb1 (F/H, p). For each generator in
this presentation, we compute the image under the holonomy h : πorb1 (F/H, p) → H. We
compose h with η to obtain τ and encode it in a data structure we call τ -tuple. Notice that
the algorithm implicitly returns the number k of singular points of F/H and the genus g of
X(F/H), indicated by using “;” in the τ -tuple.

Input Regular map F , (H,B, η)-triple.

Output τ -tuple in Bk+2g

(τ(σ1), . . . , τ(σk); τ(α1), τ(β1), τ(α2), . . . , τ(βg))

of the images under τ = η ◦ h.

Algorithm

1. Compute black-and-white triangulation of F/H.

2. Find embedded fat graph.

3. Perform handle slides.

4. Compute holonomy h : πorb1 (F/H, p) � H.

5. Apply η to h.

Remark 2.11.1. Notice that the order of σj, h(σj), and τ(σj) = η(h(σj)) agree, hence,
an τ -tuple implicitly contains what order each singular point si in the associated handle
decomposition has.
In other words, the algorithm makes a choice on how to label the singular points s ∈ Σ(F/H).
A priori, it should also return a tuple with the orders of the singular points si if we want to
be able to reconstruct F from the τ -tuple. However, this information is already contained
implicitly.
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Computing the Black-and-White Triangulation of F/H

In this section, we describe the following algorithm:

Input Regular map F , subgroup H ⊂ G.

Output Black-and-white triangulation of F/H. (Conjugacy class of
h(γs) ∈ H for each singular point s ∈ Σ(F/H).)

Algorithm
See text for the structure of triangulation.

Here γs denotes a ssl about the singular point s ∈ Σ(F/H).

First, we describe the triangulation of F obtained by subdividing each p-gon into 2p triangles
(Schwarz’s triangles in [Cox73]) that we color black and white as in Figure 2.21. A triangle
pair is a black and a white triangle sharing an edge as shown in the figure.

g
gRgr

gT

g〈R〉

g〈S〉 g〈T 〉 gR〈S〉

Figure 2.21: Triangulation of a regular map.

The triangle pairs correspond to the elements g ∈ G = Aut+
reg(F ) such that the automor-

phism g ∈ G takes the triangle pair corresponding to id to g. More general, left-multiplication
of a label of a triangle pair by an automorphism g ∈ G gives the action of g on F . In par-
ticular, left-multiplication by one of the generators R, S, or T yields a rotation about one of
the vertices of the black triangle labeled id. Right-multiplication by R, S, or T of a triangle
pair g yields a rotation about one of the vertices of the black triangle labeled g.

This means that right-multiplication by R, r = R−1, and T gives the adjacent triangle pairs.
There are three classes of vertices in the triangulation of F corresponding to the p-gon
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centers, edge centers, and vertices of the regular map F . Vertices in each class correspond
to cosets g〈R〉, g〈S〉, and g〈T 〉. A triangle corresponding to g has vertices corresponding to
those cosets, see Figure 2.21.

Let H be a subgroup of G. To obtain the orbifold F/H, let H act on the above structures
from the left. The quotient F/H again posses a triangulation by triangle pairs of black and
white triangles. The triangle pairs correspond to cosets Hg and the vertices to double cosets
Hg〈R〉, Hg〈S〉, and Hg〈T 〉. The triangles in a triangle pair might share more than one edge,
for example, if a conjugate of T is in H, we obtain the triangle pair shown in Figure 2.22.

gRgr
g

Figure 2.22: Triangle pair with shared edge.

Remark 2.11.2. Some of the vertices turn into singular points of F/H. LetHg〈X〉 represent
a vertex s of F/H where X = R, S, or T . Take the least k > 0 such that HgXk = Hg,

i.e., take the least k > 0 such that (gXg−1)
k ∈ H. This means that rotating the orbifold by

k notches about the vertex takes the orbifold to itself. Hence, the element (gXg−1)
k

is the
image h(γs) of a ssl γs ∈ πorb1 (F/H, p) about the vertex in H. Notice that the orientation of
the ssl is compatible with the orientation of F/H. Apply η to obtain the conjugacy class of
τ(γs).

Remark 2.11.3. Recall that γs is determined only up to conjugacy by the singular point
s, as is h(γs). Similarly, the above computation gives conjugate, but different (gXg−1)

k
for

different representatives g of the same vertex s.

The Dual 2-Cell Complex

Section 2.11.1 constructs a triangulation of F/H. Take the dual 2-cell complex, see Figure
2.23. The vertices of the 2-cell complex are trivalent and colored black and white being the
dual of black and white triangles. This makes the 1-skeleton of the 2-cell complex a bipartite
graph. Call p the vertex corresponding to the black triangle labeled id. It serves as base
point for F/H.
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Figure 2.23: Dual 2-cell complex of the canonical triangulation of F/H.

Embedded (Fat) Graph

For each singular point s of F/H, remove the corresponding (open) 2-cell in the dual 2-cell
complex. The homotopy type is now that of the punctured surface X(F/H) \Σ(F/H). Re-
move another random 2-cell. We obtain a surface with boundary and with free fundamental
group.

Figure 2.24: Simple homotopies on the 2-cell complex of punctured F/H.

Remove a 2-cell and an adjacent edge as in Figure 2.24. Repeat until there are no 2-cells
left. If a vertex (except for p) is connected to only one edge, remove the vertex and the
edge. Repeat until no such vertices are left. These steps are simple homotopies resulting in
a graph embedded into the 1-skeleton of the 2-cell complex, see Figure 2.25.

Being embedded into a surface, it is naturally a fat graph G, i.e., the orientation of the surface
induces a cyclic order of the edges incident to a vertex. The fat graph G is a deformation
retract of the 1-skeleton of a handle decomposition of X(F/H) \ Σ(F/H) with only one
2-handle.

Unzipping the Fat Graph

Given a fat graph G, we can perform the “unzip” move in Figure 2.26 to obtain a new fat
graph G′ that projects onto G.
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p
ssl

Figure 2.25: Embedded graph in 2-cell complex.

1

1

2

2

3

3

G

G'

Figure 2.26: Unzip move on a fat graph.

Perform these moves on the fat graph G as long as possible avoiding the vertex p. We obtain
an “unzipped” graph G̃ that projects onto G and such that only the vertex p has valence
different from two. The unzipped fat graph G̃ explicitly illustrates a 1-skeleton of punctured
F/H, as shown in Figure 2.27. Furthermore, G̃ has canonical loops γi generating π1(G̃, p).
Each such loop projects to a loop in G and, hence, onto the 1-skeleton of the 2-cell complex.

Reading the Image of a Loop

Given a loop γ that is a canonical generator of π1(G̃, p), take its image in the 1-skeleton of
the 2-cell complex. Split it at the black vertices into arcs. Each arc consists of two segments
that “bend” around a vertex in the black and white triangulation, see Figure 2.28. Hence,
we can assign R±1, S±1, or T±1 ∈ G to the arc. Write those in the order the loop traverses
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p p

unzipping

ssl

Figure 2.27: Unzipped fat graph making 1-skeleton structure apparent.

the arcs. The resulting word is the image h(γ) of γ under the holonomy.

R S T

Figure 2.28: Arcs corresponding to the generators R, S, and T .

Handle Slides

The “unzipped” fat graph G̃ models a 1-skeleton of a handle decomposition of punctured
F/H and we have computed a presentation the holonomy

h : π1(G̃, p)→ πorb1 (F/H, p)→ H

in the loops of G̃.

The kernel ker(π1(G̃, p)→ πorb1 (F/H, p)) from the free group might not be generated by the
relations in the standard presentation of πorb1 (F/H, p). This is equivalent to the fat graph G̃
not being in the standard form given in Figure 2.29, e.g., the left picture in Figure 2.30. To
fix this, we use handle slides (see Figure 2.30) on the fat graph G̃ to bring it into the standard
form. In the standard form, each boundary component of the fat graph G̃ is supposed to
represent an ssl except for the “outer” boundary component representing the relation in πorb1 .
This can be checked by detecting whether the outer boundary component is sent to zero,
and fixed by handle slides if not.
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p

βg
αg β1 α1

σk σ1

Figure 2.29: Standard fat graph serving as 1-skeleton of X(F/H) \ Σ(F/H).

γ′1 = γ−12 γ1

γ2

γ1γ2

Figure 2.30: Handle slide on a fat graph.

Such a handle slides alters the fat graph G̃ and the way it maps into F/H. If G̃′ is,
e.g., obtained from the handle slide in Figure 2.30, then we obtain a new presentation
h′ : πorb1 (G̃′, p)→ H from h : πorb1 (G̃, p)→ H such that

h′ : γ1 7→ h(γ−1
2 γ1).

Having performed the handle slides and kept track of the images of the generators of π1(G̃, p),
we can now read the h-tuple, see Figure 2.29.



121

2.11.2 Step 1 in Decision Tree

This step is based on the Main Theorem 2.7.7 for mappings.

Input Conjugacy class of τ(γs) for each singular point s ∈ Σ(F/H).
Output Boolean: τ is induced by orbifold map.
Algorithm Check that each τ(γs) is a sl in B.

Remark 2.11.4. This step is unnecessary (i.e., always yes) for finite subgroups B ⊂ SO(3)
regarded here. The reason is that every element in B fixes some axis. In other words, every
element in πorb1 (S3/B, p) is a sl and the condition is void.

This is not the case for other spherical 3-orbifolds. For example, take two axis in S3 such
that rotations about them commute. Let Γ be generated by a rotation about one axis by
2π/p and a rotation about the other axis by 2π/q. The orbifold S3/Γ is topologically S3

with singular locus being the Hopf link, the components having order p and q. The multiples
of the generators of Γ are sl, but the other elements in πorb1 (S3/Γ, p) ∼= Z/p⊕ Z/q are not.

2.11.3 Step 2 in Decision Tree

Input Conjugacy class of τ(γs) for each singular point s ∈ Σ(F/H).
Output Boolean: τ is induced by immersion of 1-skeleton.
Algorithm Check that each τ(γs) is a msl in B.

Remark 2.11.5. An element in B is a ssl if it is conjugate to R±1, S±1, or T = T−1 = RS
(only S±1 if B is cyclic). All msl in B are given by

{Xn : X is a ssl, n|ord(X), n 6= ord(X)}.

This step is checking the conditions of Lemma 2.7.6 for immersing the 1-skeleton of (F/H, p).
In this case, the lemma simplifies to:

Lemma 2.11.6. The homomorphism τ is induced by an immersion of the 1-skeleton of
(F/H, p) if and only if τ sends every ssl to an msl. In other words, this is a necessary
condition for the existence of (H,B, η)-equivariant immersion.

Proof. Since τ is induced from a (H,B, η)-triple, a sl in F/H or M/B gives an element
in H and B, and, because η is an isomorphism, the image τ(γs) ∈ πorb1 (S3/B, p) of a ssl
γs ∈ πorb1 (F/H, p) has the same order as the ssl γs.
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2.11.4 Step 3 in Decision Tree

Step 3 is an application of the Main Theorem 2.7.30 for Immersions.

Input Conjugacy class of τ(γs) for each singular point s ∈ Σ(F/H).
Output Boolean: Order two loop exists.
Algorithm Check that there is τ(γs) with ord(τ(γs)) = 2.

This is equivalent to the existence of h(γs) with ord(h(γs)) = 2 because η is an isomorphism.

2.11.5 Step 4 in Decision Tree

Input τ -tuple
Output Boolean: Cohomology obstruction for immersion

Algorithm Construct loop to attach 2-handle, determine framing, com-
pute framing invariant. See text for details.

The τ -tuple specifies how to immerse the 1-skeleton of the standard handle decomposition
into S3/B. The 1-skeleton is bounded by an immersed ribbon. By the Main Theorem 2.7.30,
an immersion exists if and only if the Z/2-framing invariant of the immersed ribbon is zero
(the framing invariant is equal to the cohomology obstruction because there is only one
2-handle and the coboundary map is zero).

We construct an immersed loop in the black-and-white triangulation of S2 corresponding to
B. Then, we discuss how to modify the blackboard framing to obtain the immersed ribbon.
For the implementation, we simplify the process.

While explaining the process we use the regular map R5.2 and icosahedral symmetry as a
guiding example. In this case, an immersion does not exist. The calculations are computer
assisted.

Example: R5.2 and Icosahedral Symmetry

The goal of this subsection is to introduce the example guiding through the rest of the section
and to give the τ -tuple for it in Equation 2.11. We choose R5.2 because it is the first regular
map in Conder’s list that has a potential immersion realizing the icosahedral group which is
the largest finite non-solvable subgroup of SO(3).
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The regular map R5.2 is the unique regular map of type {3, 10} and genus 5. Up to conjugacy,
there are two subgroups of Aut+

reg(R5.2) that are isomorphic to B = [3, 5]. This results in
two (H,B, η)-triples up to equivalence. One of the triples fails Step 2 of the decision tree
in Figure 2.20. The other one passes Step 2 and fails Step 3, so the computation of the
cohomology obstruction in Step 4 decides the existence of an equivariant immersion.

p

S

id

γ1

γ2

γ3

Figure 2.31: Black-and-white triangulation of (F/H, p) for R5.2 and H ∼= B icosahedral
symmetry.

Figure 2.31 shows the black-and-white triangulation of the quotient orbifold (F/H, p) as
described in Section 2.11.1. Topologically, F/H is a sphere. The dashed lines indicate which
two triangles form a triangle pair. A group element g ∈ Aut+

reg(F ) representing the triangle
pair Hg is written onto the dashed line, the label being oriented so that the vertex Hg〈R〉
is up and the vertex Hg〈T 〉 is down. The figure implicitly also shows a standard handle
decomposition of (F/H, p).

We can read the holonomy h : πorb1 (F/H, p) → H from the loops as described in Section
2.11.1:

h(γ1) = R

h(γ2) = S2 (2.10)

h(γ3) = TRT−1

We can apply η and write each group element as a conjugate of X = R±1, S±1 and then as
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a word in the generators to obtain the τ -tuple (τ(γ1), τ(γ2), τ(γ3)):

τ(γ1) = (S2)R−1(S2)−1

τ(γ2) = (TR−1)S(TR−1)−1 (2.11)

τ(γ3) = SRS−1

Model of Target Space

Assume B is not cyclic. We construct the immersed ribbon in the black-and-white trian-
gulation of S2 corresponding to the symmetry group B as described in Section 2.11.1. For
example, Figure 2.32 shows the black-and-white triangulation for B being the icosahedral
group if we identify edges of the net shown. We have a copy of the base point p in each black
triangle.

Figure 2.32: Black-and-white triangulation of S2 for B being the icosahedral group. Glue
the net to obtain a icosahedron.

Formally speaking, the orbifold S3/B is the suspension of a triangle orbifold O. Avoiding
the trivalent vertices of Σ(S3/B), the ribbon is immersed into the product I ×O. Lifted to
S3, the ribbon is immersed into a product of an interval I and a regular map, namely the
surface of a tetrahedron, octahedron, icosahedron, or the dihedral group. We can triangulate
this regular map as in Section 2.11.1 by black and white triangles.
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Arcs for Generators and Paths for Words

Given a copy of the base point p in a black triangle and X = R±1, S±1, T±1, we can draw an
arc for X in the 1-skeleton of the 2-cell complex dual to the black and white triangulation
as in Figure 2.28. For better drawings, we perturb the arc for X so that it does not overlap
with other arcs, see Figure 2.33.

R

S-1

R-1

T
T -1

S

Figure 2.33: Arcs for the generators R±1, S±1, T±1 (notice that the arcs for T and T−1 are
not the same.) Path for the word R−1SR−1T .

Given a word, we can connect the arcs to a path, see Figure 2.33 for an example. This is
the reverse process of reading off a word from a loop that was described in Section 2.11.1.



126

Immersing the 0-Handle

We draw a little disk D around the base point p and fix k + 4g points on ∂D counter-
clockwise. These points mark the ends of the 1-handles attaching to the 0-handle, see Figure
2.34. Split ∂D at the points into arcs. Figure 2.35 shows this in case of the guiding example
of this section.

p

1k

k+
1

k+
2

k+
3

k+
4

k+4(g-1)+1

k+4(g-1)+2

k+4(g-1)+3

k+4(g-1)+4

βg
αg β1 α1 σk σ1

Figure 2.34: Arcs on the boundary ∂D of the 0-handle.

1

2

3

Figure 2.35: 0-handle for the guiding example of this section.
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Constructing a Path for τ(σi)

We write τ(σj) as word wj = γjX
n
j γ
−1
j with Xj = R±1, S±1 and γj a word in R±1, S±1, T±1.

We construct a path for γj and perturb the first arc to connect to the point j on the 0-
handle. We extend the path by Xj and then take a rotated and reversed copy of the path for
γj to obtain the path for τ(σj). Figure 2.36 shows the path for τ(γ1) in case of the guiding
example of this section. The arc for Xj is marked bold.

Figure 2.36: Path for τ(γ1) = (S2)R−1(S2)−1 in the guiding example of this Section.

Constructing a Path for τ(αi) and τ(βi)

We write τ(αi) and τ(βi) as words in R±1, S±1, T±1. We denote these words by wk+4(i−1)+1

and wk+4(i−1)+2 and construct the path for these words as described earlier. For τ(αi), we
perturb the first and last arc of the path to connect to the point k + 4(i − 1) + 1 and
k + 4(i − 1) + 3 on the 0-handle. For τ(βi), perturb the arcs to connect to the points
k + 4(i− 1) + 4 and k + 4(i− 1) + 2.

Let wk+4(i−1)+3 = w−1
k+4(i−1)+1 and wk+4(i−1)+4 = w−1

k+4(i−1)+2.



128

Putting it Together to a Loop

To obtain the loop, we start with the first arc of ∂D from the point k + 4g to the point 1
on the 0-handle. We add the path for τ(σ1), the next arc of ∂D, τ(σ2), and so on. Then,
we take the path for τ(α1), the suitable arc of ∂D, τ(β1), arc of ∂D, a reversed and rotated
copy of the path for τ(α1), arc of ∂D, a reversed and rotated copy of the path for τ(β1), and
so on.

In other words, we build a loop for the word w1 . . . wkwk+1 . . . wk+4g with the arcs corre-
sponding to the first and last letter of each wi perturbed and connected by pieces of ∂D.

Figure 2.37 shows the resulting loop for the guiding example of this section.

1

2

3

Figure 2.37: Loop serving as boundary of immersed 1-skeleton.

Loop is Immersed

If the words wj do not contain XX−1, then the loop is immersed. In particular, this is true
if we choose the words wj, respectively, γj to be of minimal length.
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Framing

Pick the blackboard framing and imagine the 2-handle is attached from the right hand side
when moving forward along the loop. This framing works except for the paths corresponding
to τ(σj) = γjX

n
j γ
−1
j where we picked Xj = R−1 or Xj = S−1. In this case, the singular point

s is to the right of the arc corresponding to Xj, and, hence, the 2-handle has to be attached
from the left hand side. Figure 2.38 shows an example. We fix this by applying a half twist
just before and after entering the arc. These twists have to be done “equivariantly”, i.e.,
they are related by the rotation Xn

j about the singular point s. This changes the framing
invariant by one, see Figure 2.38.

Figure 2.38: Changing framing if Xj = R−1 or S−1, here for X1 = R−1.

Corollary 2.11.7. An immersion exists if and only if the number of self-intersections of the
immersed loop constructed above plus the number of j with τ(σj) = γjX

n
j γ
−1
j where Xj = R−1

or Xj = S−1, p > 0 is even.

The number of self-intersections of an immersed loop is defined modulo 2 because there
might be choices of perturbing it to make the intersections transverse.

In the guiding example of this section, this happens once for τ(σ1) = (S2)R−1(S2)−1. Figure
2.39 shows the resulting framing. The framing invariant is odd, hence, an immersion does
not exist.
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1

2

3

Figure 2.39: Immersed ribbon serving as boundary of immersed 1-skeleton.
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Perturbing the Arcs Revisited

Recall that we perturbed the arcs corresponding to the first and last letter in a word wi to
connect them through parts of ∂D. The goal of this section is to avoid this perturbations,
effectively collapsing the 0-handle. The resulting loop is easier to construct: it is simply
the loop corresponding to the word w1 . . . wk+4g. The example in Figure 2.40 shows a well-
behaved case where this results again in an immersed loop with blackboard framing in the
same regular homotopy class.

Figure 2.40: Collapsing a 0-handle.

In general, however, we might run into problems:

1. Potentially, the loop might traverse the 0-handle in the same black triangle more than
once. This might cause several intersections between the different segments passing
through the triangle. However, we are interested only in the parity of the intersection
number, hence, we can apply a regular homotopy to each segment independently and
can count the number of self-intersections after it, see Figure 2.41.

Figure 2.41: Loop traversing a black triangle twice with odd number of self-intersections.



132

3

Figure 2.42: 0-handle collapse resulting in non-immersed loop.

2. Loop no longer immersed. If the last letter of the word wj is the inverse of the first
letter of wj+1 (cyclic indexing), then collapsing the 0-handle results in a loop that has
a “hair pin” and is no longer immersed. Figure 2.42 shows an example that is part of
the loop for the guiding example in Figure 2.37.

We can always change a word wj = γjX
n
j γ
−1
j by prepending R±p, S±q, or T±2 to γj. For

the words for τ(αi) and τ(βi), we can prepend and append these as well. We can use
this to avoid the pattern XX−1 anywhere in the (cyclic) word w1 . . . wkwk+1 . . . wk+4g,
thus fixing the problem.

3. Change of framing. When collapsing the 0-handle, the number of self-intersections
of the immersed loop might change. Thus, the blackboard framing of the loop might
yield a different Z/2-framing invariant, this is shown in Figure 2.43. This happens if
the incoming arc intersects the outgoing arc.

Figure 2.43: Wrong blackboard framing after 0-handle collapse.

Recall that the arcs connecting to the 0-handle D correspond to the first and last letter
in the wi. To see whether these arcs intersect, we fix a standard way to connect these
arcs. This happens in an annulus D′ around D. Notice that the arcs in Figure 2.33
hit D′ at different angles. We obtain the picture shown in Figure 2.44.

Make a cut on ∂D between the vertices k + 4g and 1, and a cut on ∂D′ between T−1

and R. Then, there is an induced ordering on the generators R < R−1 < S < S−1 <
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4

R

R−1

S

S−1

T−1

T

D

D′

k + 4g

Figure 2.44: Standard way to connect arcs to the 0-handle.

T < T−1. The incoming and outgoing arc intersect if the inverse of the last letter of
wi has higher order than the first letter of wi+1.

To cover the case wk+4g and w1, we can apply cyclic indexing of the wj. Notice that
this case behave in the opposite way. We can fix this by adding one self-intersection
to the total.

4. Trivial words τ(αi), τ(βi), and γj. This might cause special cases. Avoid by applying
the same trick of prepending or appending R±p, S±q, or T±2.
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Algorithm

To summarize, we have the following algorithm:

Input τ -tuple.
Output Boolean: Cohomology obstruction for immersion.
Algorithm

1. Write each τ(σj) as word wj = γjX
n
j γ
−1
j with Xj = R±1, S±1 and

γj a word in R±1, S±1, T such that wj contains no XX−1.

2. Write each τ(αi) as word wk+4(i−1)+1 in R±1, S±1, T such that wj
contains no XX−1.

3. Write each τ(βi) as word wk+4(i−1)+2 (same as τ(αi)).

4. Prepend R±p, S±q, T±2 to γj, prepend or append to wk+1, . . . , wk+4g

to avoid empty wi, γj orXX−1 in the cyclic word w1 . . . wk+4g where
wk+4(i−1)+3 = w−1

k+4(i−1)+1 and wk+4(i−1)+4 = w−1
k+4(i−1)+2.

5. Add the following numbers modulo 2. If sum is odd, no immersion
exists.

(a) Number of i = 1, . . . , k+4g such that the inverse of the the last
letter of wi has higher order than the first letter of wi+1 (cyclic
indexing). The order is R < R−1 < S < S−1 < T < T−1.

(b) 1 (because the previous calculation is reversed for i = k+ 4g)

(c) Number of j = 1, . . . , k such that the word wj is γjX
n
j γ
−1
j

with Xj = R−1, S−1.

(d) Number of self-intersections of the immersed loop w1 . . . wk+4g

in the black-and-white triangulation (see next section).

Number of Self-Intersections of An Immersed Loop

Consider an immersed loop described by a word w = X1 . . . Xn. Recall that an immersed
loop can be perturbed to have transverse self-intersections, defining the number of self-
intersections modulo two.

First, assume the loop intersects itself only at copies of p. Let ab and cd represent paths of
two arcs each that intersect in the middle, see Figure 2.45.



135

a

b

c

d
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bc

d a

b

c

d

a b

c d

a

b

c

d

Transverse Not Transverse
Odd number Even number

Figure 2.45: Two paths intersecting in a point and their intersection numbers.

There is a cyclic ordering of the letters R < R−1 < S < S−1 < T < T−1 < R coming from
the angles at which the arcs hit p in Figure 2.33. We can detect whether ab and cd intersect
transversely yielding odd intersection number by checking whether the following holds:

a−1 < c−1 < b < d < a−1 or a−1 < d < b < c−1 < a−1. (2.12)

Now, drop the assumption. Let the loop traverse the same arc twice, either in the same or
opposite orientations. We reduce to the previous case by perturbing the arcs so that the
loop intersects itself only in points at copies of p again, see Figure 2.46.

Figure 2.46: Perturbation such that loop intersects in points only.

To do this in a deterministic way, we parametrize a family of perturbed arcs by pairs (X,n)
where X = R±1, S±1, or T±1 as in Figure 2.47. The angles at which the perturbed arcs hit
p again induce a cyclic ordering:

(R, 1) < · · · < (R, n) < (R−1, n) < · · · < (R−1, 1)

<(S, 1) < · · · < (S, n) < (S−1, n) < · · · < (S−1, 1)

<(T, 1) < · · · < (T, n) < (T−1, n) < · · · < (T−1, 1) < (R, 1).

(2.13)

We obtain the perturbed loop by using the arc (Xn, n) for the letter Xn at the n-th place in
the word. Using the new cyclic ordering on these pairs, we can again apply Equation 2.12
to compute the parity of the intersection number of two paths ab = (Xi, i)(Xi+1, i + 1) and
cd = (Xj, j)(Xj+1, j + 1).

We detect intersections by checking whether two subwords X1 . . . Xj and X1 . . . Xi are rep-
resenting the same element in B. Thus, we have the following algorithm:
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(S,1)

(S,n)

(S  ,1)-1
(S  ,n)-1

Figure 2.47: Family of perturbed arcs, also see Figure 2.33.

Input Group B, a word w = X1 . . . Xn presenting an immersed loop
in the black-and-white-triangulation.

Output Number of self-intersections of immersed loop modulo 2.
Algorithm

1. Compute b1, . . . , bn where bj is the element in B presented by the
word X1 . . . Xj.

2. Compute the number of pairs (i, j) with 1 ≤ i < j ≤ n such that

bi = bj and(
(X−1

i , i) < (X−1
j , j) < (Xi+1, i+ 1) < (Xj+1, j + 1) < (X−1

i , i)

or

(X−1
i , i) < (Xj+1, j + 1) < (Xi+1, i+ 1) < (X−1

j , j) < (X−1
i , i)

)
where we use the cyclic ordering in Equation 2.13 and cyclic in-
dexing for the Xi.

2.11.6 Step 5 in Decision Tree

Input Conjugacy class of τ(γs) for each singular point s ∈ Σ(F/H).
Output Boolean: Necessary condition for embedding.
Algorithm Check that each τ(γs) is a ssl in B.
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Remark 2.11.5 explains how to detect ssl’s.

Remark 2.11.8. Notice that msl is replaced by ssl when switching from immersions to em-
beddings. Let us construct an example illustrating that ssl is too restrictive for immersions.
Embed a disk D into S3 intersecting an axis in S3 perpendicular. Compose the embedding
with the trivial double covering map F = D × Z/2→ D. F is immersed into M = S3. Let
the group H = B = Z/4 act on F and M such that the generator b rotates D and M by a
1
4
th of a turn and also exchanges the two disks in F . Thus, b2 rotates each disk in F by a half

turn and does not exchange the disk. The quotient F/H thus is a disk with a singular point
of order two, see Figure 2.48. A ssl in F/H goes to twice a generator of B, i.e, a msl but
not a ssl. This happens for the immersed regular map R3.4, see Remark 2.12.1. However,
this cannot happen for equivariant embeddings F → M : Let s ∈ M be a point fixed by a
cyclic subgroup. Then, f−1(s) consists of at most one point in F and that point is fixed by
the same cyclic subgroup.

Figure 2.48: An equivariant immersion sending a ssl to a msl.
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2.11.7 Step 6 in Decision Tree

Step 6 can be skipped in the decision tree but speeds up implementation, since it is a quick
check not requiring a standard handle decomposition.

Input Conjugacy class of τ(γs) for each singular point s ∈ Σ(F/H).
Output Boolean: τ passes counting argument similar to Remark 2.8.7.
Algorithm

Let αX be the number of τ(γs) that are conjugate to X in B.

1. If B is the octahedral, icosahedral, or dihedral group D2n,

check that αXR , αXS , and αXT are either all odd or all even.

2. If B is the tetrahedral group,

check that αXR = αXR−1 and (αXR > 0 if αXT is odd).

3. If B is the dihedral group D2n+1 = [2, 2n+ 1]+,

check that αXR is even and (αXR > 0 if αXS is odd).

4. If B is cyclic,

check that αXS = αXS−1 .

These follow from counting arguments similar to the one presented in Remark 2.8.7: starting
with a sphere around a generic point or the trivalent vertex of Σ(S3/B) in Figure 2.16, each
bead increases αX and then αX−1 by one.

In case 1, the ssl R is conjugate to R−1 and S to S−1 in B, and furthermore T = T−1.

In case 2, the ssl R is conjugate to S−1 and S to R−1 in B.

In case 3, the ssl S is conjugate to S−1 and R = R−1 is conjugate to T = T−1.

In the last case, B is Abelian and has only one generator S.
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2.11.8 Step 7 in Decision Tree

Input τ -tuple as defined and computed in Section 2.11.1
Output Boolean: Embedding exists
Algorithm

1. Compute the orbit of the τ -tuple under the action of the twists.

The action of a twist is explicitly described in Section “Action on τ -Tuple”.

2. For each τ -tuple in the orbit:

(a) For each b ∈ B:

i. Conjugate τ -tuple by b.

ii. Check whether the τ -tuple of one of the forms in Section 2.8.4.

First, notice that the mapping class group is infinite, so, a priori, it is not clear that the
algorithm is finite. However, the space of all τ -tuples Bk+2g is finite and, hence, computing
the subspace closed under the moves described in Section “Action on τ -tuple” is still finite.

Issues with Base Point

The Dehn twists and half twists in Figure 2.19 act on τ̃ and, hence, on τ -tuples. These
twists give elements in Mod(Sg,k, p) and thus Aut(π1(Sg,k, p)), but do not necessarily generate
Mod(Sg,k, p) as required in Theorem 2.8.10. However, by Theorem 2.8.11, the twists generate
Mod(Sg,k) under the natural map Mod(Sg,k, p)→ Mod(Sg,k).

Considering the Birman exact sequence [FM, Theorem 4.6]

1→ π1(Sg,k, p)→ Mod(Sg,k, p)→ Mod(Sg,k)→ 1,

we can thus fix the issue by conjugation:

Corollary 2.11.9. An embedding exists if and only if conjugation by an element in B and
the action by Dehn twists and half twists in Figure 2.19 can bring the τ -tuple (computed in
Section 2.11.1) into one of the forms listed in Section 2.8.4.

Action on τ-Tuple

Consider the τ -tuple

(τ(σ1), . . . , τ(σk); τ(α1), τ(β1), . . . , τ(αi−1), τ(βi−1), τ(αi) , τ(βi), . . . , τ(βg)).
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The Dehn twist about ai turns this into the τ -tuple

(τ(σ1), . . . , τ(σk); τ(α1), τ(β1), . . . , τ(αi−1), τ(βi−1), τ(αi)τ(βi), τ(βi), . . . , τ(βg)).

This is because the Dehn twist about ai induces an automorphism of π1(Sg,k, p) that fixes
each generator except for sending αi to αiβi. We denote this by

ai 7→ (αi 7→ αi βi).

Using Figure 2.49, 2.50, 2.51, and 2.52, we have explicitly computed the automorphisms for
each Dehn twist respectively half twist:

ai 7→ (αi 7→ αi βi) for i = 1, . . . , g

mi 7→ (βi 7→ βi αi) for i = 1, . . . , g

c1 7→


σk 7→ (σkα1) σk (σkα1)−1

α1 7→ σk α1 σ
−1
k

β1 7→ β1 (σkα1)−1



ci 7→


βi−1 7→ (βi−1α

−1
i−1β

−1
i−1αi) βi−1

αi 7→ (βi−1α
−1
i−1β

−1
i−1αi) αi (βi−1α

−1
i−1β

−1
i−1αi)

−1

βi 7→ βi (βi−1α
−1
i−1β

−1
i−1αi)

−1

 for i = 2, . . . , g

hj 7→

 σj 7→ σj σj+1 σ
−1
j

σj+1 7→ σj

 for j = 1, . . . , k − 1
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Figure 2.49: The curve βi−1α
−1
i−1β

−1
i−1αi is helpful in the following computations.

Figure 2.50: Dehn twists about the curves ai,mi, and ci.
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Figure 2.51: Dehn twist about the curve c1.

Figure 2.52: Half twist about the curve hj.
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2.12 Examples of Equivariant Morphisms, Immersions,

and Embeddings

This section reviews new and well-known (e.g., regular star polyhedron
{

5
2
, 5
}

) examples of
equivariant morphisms, immersions, and embeddings of regular maps. Some of the examples
are due to, or, grew out of discussions with Jeff Weeks and Carlo Séquin.

Let F be a regular map and B a finite group of isometries of E3. The pair (F,B) appears
in the subsection corresponding to the strongest case possible, e.g., R3.1 and C7 appears in
“Equivariant Morphisms” because there is no C7-equivariant immersion of R3.1. Given a
pair (F,B), we also write for each (H,B, η)-triple what step passing or failing in Figure 2.20
is decisive. We call a morphism F →M faithfully equivariant if every orientation-preserving
automorphism of the regular map F is realized by a symmetry of M , usually E3.

We focus on the ubiquitous Klein quartic R3.1 and the next Hurwitz surface, the Macbeath
surface R7.1. The map R4.6 is included because it illustrates how a branched cover can
be visualized as stellated polygon. The case of R3.4 provides an example of two subgroups
being isomorphic but not conjugate, only one of them giving rise to an equivariant immersion
that can be modified to a faithfully equivariant embedding into the 3-torus, but not to an
equivariant embedding into E3. This motivates the examples at the end of the section where
we allow target spaces different from E3.

We adopt the notation in [CD01] for Conder’s census of regular maps. For example, the
Klein quartic is denoted by “R3.1” because it is the “1”st reflexible (“R”) regular map of
genus “3” in the census. The letter “R” is replaced by “C” for chiral regular maps, and
“N” for non-orientable regular maps. Since the indexing is rather non-descriptive, we also
include the type {p, q} of the regular map, and, if genus and type uniquely specify a chiral
or reflexible regular map, we write “of type {p, q} (unique)”.

2.12.1 Morphisms into E3

R4.6 and Icosahedral Symmetry: Small Stellated Dodecahedron

Passes: Step 1, Fails: Step 2

The regular star polyhedra are obtained by stellating the Platonic solids (see [Cox73]). A
stellated polygon

{
p
n

}
can be thought of as an n-cyclic branched cover of a p-gon, as shown

in Figure 2.53. Hence, a regular star polyhedron is a mapping from a regular map F into
E3 that is cyclically branched at the vertices, respectively, face centers, and, therefore, not
an immersion.
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2

Figure 2.53: Stellated polygon as cyclic branched cover.

Up to duality, there are two regular star polyhedra known as the Kepler-Poinsot polyhedra:

•
{

5
2
, 3
}

and
{

3, 5
2

}
are mappings of the dodecahedron {5, 3} and icosahedron {3, 5}.

•
{

5
2
, 5
}

and
{

5, 5
2

}
are mappings of the self-dual R4.6 of type {5, 5} (unique).

Each mapping is branched at 12 places and is faithfully equivariant.

Klein Quartic R3.1 of Type {3, 7} (Unique) and C7-Symmetry

Passes: Step 1, Fails: Step 2

The Klein quartic R3.1 also appears in Section 1.2.1 and 2.2.2. Up to conjugacy, Aut+
reg(R3.1)

has one C7 subgroup which is generated by rotating one heptagon by a 1
7
th of a turn. As

described in [Ago], the generator of C7 rotates one other heptagon by 2
7
th and a third by

4
7
th of a turn. Hence, Step 2 fails.

In other words, the C7-equivariant mapping of R3.1 intersects the C7-symmetry axis of E3

in the face centers of three heptagons. At one of these points, the mapping is locally an
embedding, but at the other two points, the mapping is a 2-, respectively, 4-cyclic branched
cover resulting in stellated heptagons

{
7
2

}
and

{
7
4

}
.

R5.2 of Type {3, 10} (Unique) and Icosahedral Symmetry

First (H,B, η)-triple Passes: Step 1, Fails: Step 2
Second (H,B, η)-triple Passes: Step 1, Fails: Step 3 and Step 4

The cohomology obstruction (Step 4) for the second triple is computed in Section 2.11.5.
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R3.4 of Type {4, 6} (Unique) and Octahedral Symmetry: Part I

First (H,B, η)-triple Passes: Step 1, Fails: Step 3 and Step 4

There are two non-conjugate subgroups of Aut+
reg(R3.4) isomorphic to the octahedral group,

resulting in two different equivariant mappings. Only one of those can be turned into an
equivariant immersion. We describe that immersion later. Here, we study the other case as
another example to compute the cohomology obstruction following Section 2.11.5.

The quotient orbifold (F/H, p) has the same black-and-white triangulation as the guiding
example in Section 2.11.5. We can again use Figure 2.31 (triangle pairs are labeled dif-
ferently, but everything else is the same), and obtain the presentation of the holonomy
h : πorb1 (F/H, p) → H in Equation 2.10. Applying η to it, we obtain the following τ -tuple
(τ(σ1), τ(σ2), τ(σ3)):

τ(γ1) = RS−1R−1

τ(γ2) = S−1RS (2.14)

τ(γ3) = S−1

We continue as in Section 2.11.5 by constructing the immersed loop for gluing the 2-handle,
see Figure 2.54. The loop has one transverse self-intersection, hence, the blackboard framing
has non-trivial Z/2-framing invariant. Two τ(γi) are expressed as conjugates of inverses of
generators, thus we have to change the blackboard framing by two full twists in total. Hence,
the framing invariant is still non-trivial, and so is the cohomology obstruction.

1
2

3

1

2

3

D

1

2

3

Figure 2.54: The arcs on the 0-handle D, the net of the tetrahedron, and the immersed
loop for attaching the 2-handle in case of the equivariant immersion of R3.4.
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2.12.2 Immersions into E3

R3.4 of Type {4, 6} (Unique) and Octahedral Symmetry: Part II

Second (H,B, η)-triple Passes: Step 3, Fails: Step 5

Aut+
reg contains (up to conjugacy) one subgroup H that is isomorphic to the octahedral group

and and that passes Step 3.

Figure 2.55: Faithfully equivariant embedding of R3.4 into the 3-torus.

We can explicitly construct the equivariant immersion as follows: as shown later in Section
2.12.4, there is a faithfully equivariant embedding of R3.4 into the 3-torus. Figure 2.55 shows
the embedded surfaces in a cube serving as fundamental domain of the 3-torus. A face of a
cube cuts a 4-gon of the regular map into two. Instead of identifying the faces of the cube,
take the top square formed by the surface intersecting the face of the cube, shrink the square
a bit and pull it half-way down into the cube. Similarly, take the bottom square shrink it,
and pull it half-way up the cube and connect both. Proceed analogously for the other faces
of the cube, creating transverse self-intersections of the surface.

Remark 2.12.1. The order four symmetry axis of the cube intersects the immersed surface
in four 4-gons. A rotation by a quarter turn about that axis exchanges these 4-gons in pairs.
However, a rotation by a half turn takes each of these 4-gons to itself by a half turn. Hence,
the centers of the 4-gons turn into order two singular points in the quotient orbifold. This
is an instance of the example in Remark 2.11.8.
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Klein quartic R3.1 and Octahedral Symmetry

Passes: Step 3, Fails: Step 5

The octahedral group has the largest order among all subgroups of Aut+
reg(R3.1) isomorphic

to subgroups of SO(3), see the table in Section 2.13.

2.12.3 Embeddings into E3

Platonic Solids and Spatial Symmetry Groups

The surfaces of Platonic solids are regular maps faithfully equivariantly embedded into E3.

Klein quartic R3.1 and Tetrahedral Symmetry: “The Eightfold Way”

The tetrahedral group is the largest (in terms of inclusion and in terms of order) subgroup
of Aut+

reg(R3.1) that can be realized by an embedding of R3.1 into E3, see table in Section
2.13.

This is illustrated by Helaman Ferguson’s sculpture “The Eightfold Way” (see Figure 2.1)
which was the starting point of this chapter.

Macbeath surface R7.1 of type {3, 7} (Unique) and D7-Symmetry

First (H,B, η)-triple Passes: Step 1, Fails: Step 2
Second (H,B, η)-triple Passes: Step 1, Fails: Step 2
Third (H,B, η)-triple Passes: Step 7

The Macbeath surface is the only other Hurwitz surface (Section 2.2.2) for which equations
are known to express it as an algebraic curve such that the automorphisms become birational
transformations, see [Mac65].

Up to conjugacy (in Autreg(R7.1)), there is one subgroup H ⊂ Aut+
reg(R7.1) isomorphic

to the dihedral group B = D7. This yields three (H,B, η)-triples up to equivalence with
different representations η, but only one passes Step 2. We will first show that this yields an
equivariant embedding. We will then explain how to construct it through two cyclic covers
from the quotient orbifold shown in Figure 2.56. Carlo Séquin has explicitly produced
pictures of the D7-equivariant embedding of R7.1 that will be published soon.
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2

22 2

2

7

Figure 2.56: Fundamental domain of the quotient orbifold R7.1/D7.
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We compute the orbifold structure of F/H as described in Section 2.11.1. Figure 2.56 shows
the quotient orbifold F/H which is S2 topologically and has one order 7 and four order 2
singular points. There are only two conjugacy classes of ssl’s in πorb1 (S3/B, p) ∼= B ∼= D7 =
[2, 7]+ (generators of [2, 7]+ as in Equation 2.1):

• The ssl S of order 7 is conjugate to S−1.

• Every ssl corresponding to an order 2 singular point can be expressed as SnRS−n.

Thus, by pushing (in the sense defined in Section 2.8.6) the order 2 singular points around
the order 7 singular point, we can obtain a presentation of τ that has one of the forms listed
in Section 2.8.4, passing Step 7.

For the construction, we use that the group D7 is solvable since [D7;D7] ∼= C7 is Abelian,
the quotient group being Z/2. Hence, F is the 7-cyclic branched cover of a 2-cyclic branched
cover of F/H. Figure 2.57 sketches the construction of the embedding through cyclic covers.
The 2-cyclic cover is uniquely specified by requiring that it unfolds the four singular points of
order 2. The 2-cyclic cover is topologically a torus, the Deck transformation is the involution
about the axis in Figure 2.57.

7

7

7
2

7

F/D7

F/C7

F

C2-equivariant

D7-equivariant

Figure 2.57: Unfolding the quotient orbifold R7.1/D7 in S3.
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2.12.4 Faithfully Equivariant Immersions and Embeddings Into
Other Spaces

Immersions into Cusped Hyperbolic 3-Manifolds

As explained in Section 1.2.1, there is an equivariant immersion of the punctured Klein
quartic R3.1 into the complement of the Thurston congruence link [Ago]. Table 2.3 lists ex-
amples of other regular maps immersing into cusped hyperbolic 3-manifolds after puncturing
the regular map at the vertices. See Section 1.1 and Section 1.15.1 for the definition of ND

z

and N̂D
z .

Table 2.3: Immersions of regular maps into cusped hyperbolic 3-manifolds.

Regular map 3-manifold Link complement

R3.1 of type {3, 7} (unique) N−3
2+ζ Thurston congruence link

R50.1 of type {3, 13} (unique) N−3
3+ζ Yes (Section 1.14)

Type {3, 19} and genus 196 N̂−3
3+2ζ ?

Type {3, 21} and genus 241 N̂−3
4+ζ ?

R19.4 of type {4, 7} (unique) N̂−4
2+ζ ?

Immersion of Klein Quartic into the 7-Simplex

Carlo Séquin suggested to me that there is a connection between the Klein quartic and
the 7-simplex. In fact, every face in the canonical triangulation of the complement N−3

2+ζ of
the Thurston congruence link connects to three different cusps. There are eight cusps and(

8
3

)
= 56 faces. Hence, when collapsing each cusp to a point, the faces of the triangulation

become the 2-skeleton of a 7-simplex. The faces in the canonical triangulation of N−3
2+ζ form

an immersed punctured Klein quartic, hence, the punctured Klein quartic is also immersed
into the 2-skeleton of the 7-simplex. When filling the punctures, it is no longer an immersion
near the vertices. Three vertices of the Klein quartic are sent to the same vertex in the
7-simplex.

Looking at only one vertex of the 7-simplex, the link of a vertex of the 2-skeleton is the
complete graph K7. We recover the connections of the Klein quartic to K7 recognized by
Thurston and described in [Ago]. For example, restricting the canonical triangulation of N−3

2+ζ

to one cusp (see definition of cusp modulus in Section 1.5) gives a triangulation of the torus
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with 1-skeleton K7. The triangulation is a regular map F such that the automorphisms of F
correspond to the symmetries of N−3

2+ζ fixing the cusp. The automorphisms also correspond
to symmetries of the Klein quartic that fix a certain class of three heptagons. The three
heptagons have the property that rotating one by a 1

7
th of a turn corresponds to rotating

another one by a 2
7
th and the third by a 4

7
th of a turn.

Embedding R3.4 of Type {4, 6} (Unique) into The 3-Torus

This example is due to Jeff Weeks. The regular map R3.4 is of the same type as R2.2 shown
in Figure 2.58 and thus the embedding can be thought of as adding one more handle to the
embedding of R2.2.

Imagine a cube containing the surface in Figure 2.55 and identify opposite faces of the cube
to obtain a 3-torus. The surface becomes R3.4. To show that every automorphism of R3.4 is
realized by a symmetry of the torus we need to realize an orientation-reversing automorphism
of R3.4, and a rotation by a half and a 1

6
th of a turn about the order 2 and order 6 axis

in the Figure 2.55. The orientation-reversing automorphism of R3.4 and the rotation by a
half turn are already realized as symmetries of the cube. To rotate R3.4 about a vertex by a
1
6
th of a turn, apply a π/3 rotation about the order 6 axis and then mirror about the plane

perpendicular to the axis and through the vertex.

This yields a representation Autreg(F ) ↪→ GL(4,Z/4). To see this, recall that, using homo-

geneous coordinates, the isometries of E3 can be expressed by 4×4 matrices

(
M x
0 1

)
with

real coefficients and M ∈ O(3). The symmetries H fixing the cube correspond to matrices
with x = 0 and coefficients in {−1, 0, 1}. H forms an index two subgroup of Autreg(R3.4).
If we pick the side length of the cube to be four, then the additional generator needed is a
translation by x = (2, 2, 2). A translation by four fixes the torus, thus regard the coefficients
modulo 4. Notice that if we use Z/2 coefficients such that −1 = 1, the group H does not
inject into GL(4,Z/2).

Embedding {2n, 2k} into S3

This family of embedded regular maps F of type {2n, 2k} and genus (n − 1)(k − 1) is a
generalization of an example due to Jeff Weeks. For n = 2, k = 3, we obtain the embedding
of R2.2 shown in Figure 2.58.

Pick two axis A and B in S3 such that the rotations commute. Pick n, respectively, k
equidistant points on A and B, see Figure 2.59. Let G consist of all geodesics connecting a
point on A with a point on B. Let G′ be obtained from G by a rotation by π/k about A
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Figure 2.58: Faithfully equivariant embedding of R2.2 of type {4, 6} (unique) into S3.

followed by a rotation by π/n about B. In other words, G and G′ intersect a torus around
A or B in dual square lattices. All points with equal distance from G and G′ form a smooth
surface F . Figure 2.59 shows F in a fundamental domain of the quotient orbifold of S3 (by
rotations of 2π/k, respectively, 2π/n about A and B). Intersect F with planes spanned by
A and a geodesic in G or G′ to obtain the edges (dashed lines) turning F into a regular map.
The 2n vertices of F lie equidistantly on A, and the 2k face centers on B.

A

B

G

G'

k

n

A
B

G

G

G

G

G'

Figure 2.59: The graph G and G′ in S3 and the regular map {2n, 2k} in a fundamental
domain of the quotient orbifold.

Every automorphism of F is realized by a symmetry of S3 in O(4). To reserve the orientation
of F , mirror about a plane through B and an edge in G. To obtain a half turn about an
edge center of the regular map F , take the axis connecting a point of G′ on A with a point of
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G on B. To rotate by a 1
2k

th of a turn about a vertex of F , mirror about the plane through
the vertex and B and rotate by a 1

2k
th of a turn about B. This reverses the orientation of

S3 and exchanges G and G′, but does not change the orientation of F .
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2.13 Results

In this section, we list for each orientable regular map F of genus 2, . . . , 7 what subgroups
fulfill necessary and sufficient conditions for the existence of an equivariant morphism, im-
mersion, or embedding. A complete list for the entire census of orientable regular maps by
Conder [CD01, Con09] up to genus 101 will be available on the ArXiV.

For example, C7 is listed for R3.1 under “Mapping” but not under “necessary” conditions for
“Immersions”, hence there is a C7-equivariant mapping, but not a C7-equivariant immersion.
C3 appears under “necessary” for immersion, but not under “sufficient”, this means that
there might be a potential C3-equivariant immersion, but the necessary step to decide it
has not been implemented yet. However, the table implies that a D4-equivariant immersion
exists because the dihedral group D4 is in “sufficient”.

A group might be listed several times in a field, for example, “3 C7” in mappings of R7.1.
This means that there are three (H,B, η)-triples up to equivalence with B = C7. This can
be caused by different subgroups H of Aut+

reg(F ) that are isomorphic but not conjugate, and
by different isomorphisms η from the same subgroup H to B, here C7.

Tet, Oct, and Ico refer to the orientation-preserving isometry groups of the tetrahedron,
octahedron, and icosahedron.

To derive these tables, we have implemented the algorithm to find all (H,B, η)-triples and the
algorithms in Step 1, 2, 3, 5, and 6 described in Section 2.10 and 2.11. The implementation
is done in gap [GAP08] and takes a couple of days to run through the entire census up to
genus 101 on a current personal computer.

Remark 2.13.1. For genus g = 7, 23, 32, 38, the only equivariant morphisms into E3 are
cyclic or dihedral.
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2.13.1 Reflexible Maps

Mapping Immersion Embedding
necessary and sufficient necessary sufficient necessary

Genus 2
R2.1 2 C2, C3, C4, C6, C8,

2 D2, D3, D4, D6

2 C2, C3, C4, C6,
2 D2, D3, D4, D6

2 C2, C4, C6,
2 D2, D3, D4, D6

2 C2, C3, 2 D2,
D3

R2.2 3 C2, C3, C4, 2 C6,
4 D2, D3, D4, D6

3 C2, C3, C4,
2 C6, 4 D2, D3,
D4, D6

3 C2, C4, C6,
4 D2, D3, D4, D6

3 C2, C3, 4 D2,
D3

R2.3 2 C2, 2 C4, C8, 2 D2,
D4

2 C2, 2 C4, 2 D2,
D4

2 C2, 2 C4, 2 D2,
D4

2 C2, 2 D2

R2.4 C2, 2 C5, 2 C10 C2 C2 C2

R2.5 3 C2, C3, 3 C6, 3 D2 3 C2, C3, 3 C6,
3 D2

3 C2, C6, 3 D2 3 C2, C3, 3 D2

R2.6 C2, C4, 2 C8 C2, C4 C2, C4 C2

Genus 3
R3.1 Tet, Oct, C2, C3, C4,

C7, D2, D3, D4

Tet, Oct, C2,
C3, C4, D2, D3,
D4

Tet, Oct, C2,
C4, D2, D3, D4

Tet, C2, C3, D2,
D3

R3.2 Tet, Oct, 2 C2, C3,
3 C4, C8, 3 D2, D3,
2 D4

Tet, Oct, 2 C2,
C3, 3 C4, 3 D2,
D3, 2 D4

Tet, Oct, 2 C2,
2 C4, 3 D2, D3,
2 D4

Tet, 2 C2, C3,
3 D2, D3

R3.3 2 C2, C3, 2 C4, C6,
2 C12, 2 D2, D4

2 C2, C3, 2 C4,
C6, C12, 2 D2,
D4

2 C2, C4, C6,
2 D2, D4

2 C2, 2 D2

R3.4 Tet, 2 Oct, 5 C2, C3,
2 C4, C6, 16 D2, 2 D3,
4 D4, D6

Tet, 2 Oct,
5 C2, C3, 2 C4,
C6, 16 D2, 2 D3,
4 D4, D6

Tet, Oct, 3 C2,
C4, C6, 16 D2,
D3, 4 D4, D6

Tet, 5 C2, C3,
C4, 16 D2, D3,
2 D4

R3.5 3 C2, 5 C4, C8, 4 D2,
2 D4

3 C2, 5 C4, 4 D2,
2 D4

3 C2, 3 C4, 4 D2,
2 D4

3 C2, 4 D2

R3.6 5 C2, 3 C4, 2 C8,
13 D2, 3 D4

5 C2, 3 C4, C8,
13 D2, 3 D4

3 C2, 2 C4,
13 D2, 3 D4

5 C2, C4, 13 D2,
D4

R3.7 3 C2, C3, 2 C4, C6,
C12, 3 D2, 2 D3, D6

3 C2, C3, 2 C4,
C6, 3 D2, 2 D3,
D6

2 C2, 2 C4, C6,
3 D2, D3, D6

3 C2, C3, 3 D2,
D3
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Mapping Immersion Embedding
necessary and sufficient necessary sufficient necessary

R3.8 Tet, 3 C2, C3, C6,
6 D2

Tet, 3 C2, C3,
C6, 6 D2

Tet, 2 C2, C6,
6 D2

Tet, 3 C2, C3,
6 D2

R3.9 C2, 3 C7, 3 C14 C2 C2 C2

R3.10 2 C2, 2 C4, 2 C8, 2 D2 2 C2, 2 C4, 2 D2 2 C2, C4, 2 D2 2 C2, 2 D2

R3.11 3 C2, 2 C4, 4 C8, 3 D2 3 C2, 2 C4, 2 C8,
3 D2

2 C2, C4, 3 D2 3 C2, C4, 3 D2

R3.12 C2, C3, C4, C6, 2 C12 C2, C3, C4, C6 C2, C4, C6 C2, C3

Genus 4
R4.1 2 Tet, Oct, 2 C2,

3 C3, C4, 2 C6, C12,
3 D2, D3, D4

2 Tet, Oct,
2 C2, 3 C3, C4,
2 C6, 3 D2, D3,
D4

2 Tet, Oct,
2 C2, C6, 3 D2,
D3, D4

2 C2, C3, C4,
3 D2, D3, D4

R4.2 Tet, Oct, Ico, 2 C2,
C3, C4, C5, C6, 3 D2,
2 D3, D4, D5, D6

Tet, Oct, 2 C2,
C3, C4, C6, 3 D2,
2 D3, D4, D6

Tet, Oct, 2 C2,
C6, 3 D2, 2 D3,
D4, D6

2 C2, C3, C4,
3 D2, 2 D3, D4

R4.3 3 C2, 2 C3, C4, 2 C6,
4 D2, 4 D3, D4, 2 D6

3 C2, 2 C3, C4,
2 C6, 4 D2, 4 D3,
D4, 2 D6

3 C2, C6, 4 D2,
4 D3, D4, 2 D6

3 C2, 2 C3, C4,
4 D2, 4 D3, D4

R4.4 3 C2, C4, 2 C5, 4 C10,
4 D2, D4, 2 D5, 2 D10

3 C2, C4, C5,
2 C10, 4 D2, D4,
D5, D10

3 C2, C4, C10,
4 D2, D4, D5,
D10

3 C2, C5, 4 D2,
D5

R4.5 2 C2, 2 C4, 2 C8, 2 C16,
2 D2, D4, 2 D8

2 C2, 2 C4, C8,
2 D2, D4, D8

2 C2, 2 C4, C8,
2 D2, D4, D8

2 C2, 2 D2

R4.6 Tet, 2 Ico, C2, C3,
2 C5, D2, D3, 2 D5

Tet, C2, C3, D2,
D3

Tet, C2, D2, D3 C2, C3, D2, D3

R4.7 3 C2, 3 C3, 2 C6, 3 D2,
5 D3, 2 D6

3 C2, 3 C3, 2 C6,
3 D2, 5 D3, 2 D6

3 C2, 3 D2, 5 D3,
2 D6

3 C2, 3 C3, 3 D2,
5 D3

R4.8 3 C2, 3 C3, 5 C6, 3 D2,
2 D3, D6

3 C2, 3 C3, 5 C6,
3 D2, 2 D3, D6

3 C2, 4 C6, 3 D2,
2 D3, D6

3 C2, C3, 3 D2,
2 D3

R4.9 3 C2, C3, C4, 3 C6,
C12, 4 D2, D4

3 C2, C3, C4,
3 C6, 4 D2, D4

3 C2, C6, 4 D2,
D4

3 C2, C4, 4 D2,
D4

R4.10 C2, C3, C6, 3 C9, 3 C18 C2, C3, C6 C2, C6 C2

R4.11 3 C2, 2 C5, 6 C10, 3 D2 3 C2, C5, 3 C10,
3 D2

3 C2, C10, 3 D2 3 C2, C5, 3 D2

R4.12 C2, C4, 2 C8, 4 C16 C2, C4, C8 C2, C4, C8 C2
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Mapping Immersion Embedding
necessary and sufficient necessary sufficient necessary

Genus 5
R5.1 Tet, Oct, 4 C2, C3,

3 C4, C6, 2 C8, 12 D2,
D3, 3 D4, D6

Tet, Oct, 4 C2,
C3, 3 C4, C6, C8,
12 D2, D3, 3 D4,
D6

Oct, 2 C2, 2 C4,
C8, 11 D2, D3,
3 D4, D6

Tet, Oct, 4 C2,
C3, C4, 12 D2,
D3, 2 D4

R5.2 Tet, 2 Ico, 3 C2, C3,
2 C5, C6, 2 C10, 7 D2,
2 D3, 4 D5, D6, 2 D10

Tet, Ico, 3 C2,
C3, C5, C6, C10,
7 D2, 2 D3, 2 D5,
D6, D10

2 C2, C6, C10,
6 D2, D3, D5,
D6, D10

Tet, 3 C2, C3,
C5, 7 D2, 2 D3,
D5

R5.3 4 C2, 3 C4, 2 C5,
21 D2, 6 D4, 2 D5

4 C2, 3 C4, C5,
21 D2, 6 D4, D5

2 C2, C4, 17 D2,
6 D4, D5

4 C2, 2 C4, C5,
21 D2, 4 D4, D5

R5.4 Tet, Oct, 6 C2, C3,
3 C4, 2 C6, 26 D2, D3,
5 D4, D6

Tet, Oct, 6 C2,
C3, 3 C4, 2 C6,
26 D2, D3, 5 D4,
D6

Oct, 3 C2, C4,
C6, 21 D2, D3,
5 D4, D6

Tet, Oct, 6 C2,
C3, 2 C4, 26 D2,
D3, 4 D4

R5.5 6 C2, 3 C4, C8, 27 D2,
3 D4

6 C2, 3 C4,
27 D2, 3 D4

3 C2, 2 C4,
21 D2, 3 D4

6 C2, C4, 27 D2,
2 D4

R5.6 6 C2, 5 C4, 2 C8,
19 D2, 3 D4

6 C2, 5 C4, C8,
19 D2, 3 D4

3 C2, 4 C4, C8,
17 D2, 3 D4

6 C2, C4, 19 D2,
2 D4

R5.7 5 C2, C3, 2 C4, 3 C6,
2 C12, 13 D2, 2 D3,
4 D6

5 C2, C3, 2 C4,
3 C6, C12, 13 D2,
2 D3, 4 D6

3 C2, 2 C4, C6,
11 D2, D3, 3 D6

5 C2, C3, C6,
13 D2, 2 D3, D6

R5.8 3 C2, 2 C4, 2 C5, 2 C10,
2 C20, 3 D2, 4 D5,
2 D10

3 C2, 2 C4, C5,
C10, 3 D2, 2 D5,
D10

2 C2, 2 C4, C10,
3 D2, D5, D10

3 C2, C5, 3 D2,
D5

R5.9 3 C2, 2 C5, 15 D2 3 C2, C5, 15 D2 C2, 11 D2 3 C2, C5, 15 D2

R5.10 Tet, 7 C2, C3, 3 C6,
31 D2

Tet, 7 C2, C3,
3 C6, 31 D2

3 C2, 2 C6, 23 D2 Tet, 7 C2, C3,
31 D2

R5.11 C2, C3, 2 C5, C6,
2 C15, 2 D5

C2, C3, C5, C6,
D5

C2, C6, D5 C2, C5, D5

R5.12 4 C2, 2 C4, 2 C8,
10 D2, 2 D4

4 C2, 2 C4,
10 D2, 2 D4

2 C2, 2 C4, 8 D2,
2 D4

4 C2, 10 D2

R5.13 5 C2, 3 C4, 4 C8, 13 D2 5 C2, 3 C4, 2 C8,
13 D2

2 C2, 3 C4, 2 C8,
11 D2

5 C2, 13 D2

R5.14 C2, 5 C11, 5 C22 C2 C2 C2

R5.15 3 C2, C3, 2 C4, 3 C6,
4 C12, 3 D2

3 C2, C3, 2 C4,
3 C6, 2 C12, 3 D2

2 C2, 2 C4, C6,
3 D2

3 C2, C3, C6,
3 D2
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Mapping Immersion Embedding
necessary and sufficient necessary sufficient necessary

R5.16 C2, C4, 2 C5, 2 C10,
4 C20

C2, C4, C5, C10 C2, C4, C10 C2, C5

Genus 6
R6.1 C2, C3, 4 C5, 2 C10,

D3, 2 D5

C2, C3, 3 C5,
C10, D3, 2 D5

C2, C10, D3,
2 D5

C2, C3, 2 C5, D3,
2 D5

R6.2 Tet, Oct, Ico, 2 C2,
C3, C4, C5, C6, 3 D2,
2 D3, D4, D5, D6

Tet, Oct, Ico,
2 C2, C3, C4, C5,
C6, 3 D2, 2 D3,
D4, D5, D6

Tet, Oct, Ico,
2 C2, C4, 3 D2,
2 D3, D4, D5, D6

Tet, 2 C2, C3,
C5, C6, 3 D2,
2 D3, D5, D6

R6.3 2 C2, C3, C4, C6, 3 C9,
3 D2, D3, D4, D6,
3 D9

2 C2, C3, C4, C6,
C9, 3 D2, D3,
D4, D6, D9

2 C2, C4, C6,
3 D2, D3, D4,
D6, D9

2 C2, C3, 3 D2,
D3

R6.4 3 C2, C4, 3 C7, 6 C14,
4 D2, D4, 3 D7, 3 D14

3 C2, C4, C7,
2 C14, 4 D2, D4,
D7, D14

3 C2, C4, C14,
4 D2, D4, D7,
D14

3 C2, C7, 4 D2,
D7

R6.5 2 C2, C3, 2 C4, C6, C8,
2 C12, 2 C24, 2 D2, D3,
D4, D6, 2 D12

2 C2, C3, 2 C4,
C6, C12, 2 D2,
D3, D4, D6, D12

2 C2, 2 C4, C6,
C12, 2 D2, D3,
D4, D6, D12

2 C2, C3, 2 D2,
D3

R6.6 C2, 8 C5, 2 C10, 2 D5 C2, 6 C5, C10,
2 D5

C2, C10, 2 D5 C2, 4 C5, 2 D5

R6.7 3 C2, C3, C4, 2 C6,
2 C8, C12, 4 D2, D3,
2 D4, D6, 2 D8, D12

3 C2, C3, C4,
2 C6, C8, C12,
4 D2, D3, 2 D4,
D6, D8, D12

3 C2, C6, 4 D2,
D3, 2 D4, D6,
D8, D12

3 C2, C3, C4,
4 D2, D3, 2 D4

R6.8 2 C2, C3, C4, C6, C8,
2 D2, D3, D4, D6

2 C2, C3, C4, C6,
2 D2, D3, D4, D6

2 C2, C4, C6,
2 D2, D3, D4, D6

2 C2, C3, 2 D2,
D3

R6.9 C2, C3, C6, 3 C9, D2 C2, C3, C6, C9,
D2

C2, C6, D2 C2, C3, D2

R6.10 C2, C3, 2 C5, 2 C10,
2 C15, D3

C2, C3, C5, C10,
D3

C2, C10, D3 C2, C3, D3

R6.11 C2, 6 C13, 6 C26 C2 C2 C2

R6.12 3 C2, 3 C7, 9 C14, 3 D2 3 C2, C7, 3 C14,
3 D2

3 C2, C14, 3 D2 3 C2, C7, 3 D2

R6.13 C2, C3, C4, C6, 2 C8,
2 C12, 4 C24

C2, C3, C4, C6,
C12

C2, C4, C6, C12 C2, C3
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Mapping Immersion Embedding
necessary and sufficient necessary sufficient necessary

Genus 7
R7.1 C2, C3, 3 C7, 3 C9,

3 D2, D3, 3 D7, 3 D9

C2, C3, C7, 3 C9,
3 D2, D3, D7,
3 D9

C2, 3 D2, D3,
D7, 3 D9

C2, C3, C7, 3 D2,
D3, D7

R7.2 2 C2, 3 C3, 2 C4, 3 C6,
3 C12, 2 D2, D3, D4,
D6, D12

2 C2, 3 C3, 2 C4,
3 C6, 2 C12,
2 D2, D3, D4,
D6, D12

2 C2, 2 C4, 3 C6,
2 C12, 2 D2, D3,
D4, D6, D12

2 C2, C3, 2 D2,
D3

R7.3 3 C2, 4 C4, 2 C8, 2 C16,
4 D2, 2 D4, D8

3 C2, 4 C4, C8,
4 D2, 2 D4, D8

3 C2, 3 C4, 4 D2,
2 D4, D8

3 C2, C4, 4 D2,
D4

R7.4 5 C2, 3 C4, 4 C8, 4 C16,
13 D2, 3 D4, 6 D8

5 C2, 3 C4, 3 C8,
C16, 13 D2, 3 D4,
5 D8

3 C2, 2 C4,
13 D2, 2 D4,
3 D8

5 C2, C4, C8,
13 D2, 2 D4, D8

R7.5 3 C2, 2 C4, 3 C7, 3 C14,
3 C28, 3 D2, 6 D7,
3 D14

3 C2, 2 C4, C7,
C14, 3 D2, 2 D7,
D14

2 C2, 2 C4, C14,
3 D2, D7, D14

3 C2, C7, 3 D2,
D7

R7.6 C2, 3 C3, C6, 6 C9, D3,
3 D9

C2, 3 C3, C6,
4 C9, D3, 3 D9

C2, C6, D3, 3 D9 C2, 2 C3, D3

R7.7 2 C2, C3, 2 C4, C6,
2 C12, 2 D2, D4

2 C2, C3, 2 C4,
C6, C12, 2 D2,
D4

2 C2, 2 C4, C6,
C12, 2 D2, D4

2 C2, 2 D2

R7.8 C2, C3, C6, 3 C7,
3 C21, 3 D7

C2, C3, C6, C7,
D7

C2, C6, D7 C2, C7, D7

R7.9 C2, C3, 2 C5, C6,
2 C10, 4 C15, 4 C30

C2, C3, C6 C2, C6 C2

R7.10 3 C2, 2 C4, 4 C8, 8 C16,
3 D2

3 C2, 2 C4, 3 C8,
2 C16, 3 D2

2 C2, C4, 3 D2 3 C2, C4, C8,
3 D2

R7.11 2 C2, 2 C4, 3 C8, 4 C16,
2 D2

2 C2, 2 C4, C8,
2 D2

2 C2, C4, 2 D2 2 C2, C4, 2 D2

R7.12 C2, C4, 3 C7, 3 C14,
6 C28

C2, C4, C7, C14 C2, C4, C14 C2, C7
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2.13.2 Chiral Maps

Mapping Immersion Embedding
necessary and sufficient necessary sufficient necessary

Genus 2, 3, 4, 5, 6
None

Genus 7
C7.1 C2, 2 C3, C6, 2 C9, D3,

D9

C2, 2 C3, C6, C9,
D3, D9

C2, C6, D3, D9 C2, C3, D3

C7.2 C2, 3 C7, 3 D2 C2, C7, 3 D2 C2, 3 D2 C2, C7, 3 D2
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2.14 Discussion

This chapter provided a complete theoretical answer to the question what orientation-
preserving symmetries of a regular map can be made directly visible in space by an equiv-
ariant morphism, immersion or embedding. We have implemented and ran some of the
algorithms for the census of orientable regular maps up to genus 101 by Conder. Section
2.13 shows the results up to genus 7 listing which regular maps and symmetry groups fulfill
sufficient or necessary conditions for an equivariant morphism, immersion, and embedding.
The answer is exact in case of equivariant morphisms. To complete the work for equivariant
immersions and give an exact answer, an implementation of the missing steps in Section 2.10
and 2.11 is straight-forward.

However, for equivariant embeddings, the decision algorithm shown in Step 7 does not have
feasible run-time because it has to search a space growing exponentially in the genus and
number of singular points of the quotient orbifold F/H. Several observations suggest that
there is a decision algorithm to replace Step 7 that has run-time growing linear in the
genus and number of singular points, thus allowing to give an exact answer for equivariant
embeddings of all regular maps in Conder’s census. We discuss this at the end.

The cohomology obstruction as defined in 2.7.7 is only well-defined if there is no ssl of order
two. We can change the formalism to make the theory more elegant, though the resulting
pictures are less intuitive. Instead of putting singular points into the 0-handles, define a
orbifold 2-handle to be a disk D with singular point of order k. In a handle decomposition
of a 2-orbifold F , let a 1-handle go around a singular point s so that it represents a ssl
γs ∈ πorb1 (F, p). Gluing the orbifold 2-handle such that it covers s then enforces the relation
γks = 0 in πorb1 (F, p). Under the coboundary map C1

CW (F ;Z/2)→ C2
CW (F ;Z/2), a 1-handle

touching D is sent to k times the generator of C2
CW (F ;Z/2) corresponding to D. Now, the

cohomology obstruction of τ is well-defined even if there is an ssl of order two, in which case
it will be automatically zero.

Related work includes Rafalski’s investigation of triangle orbifolds immersed into hyperbolic
3-orbifolds [Raf10].

Future work might also extend the theory to include subgroups H ⊂ Autreg(F ) that contain
orientation-reversing automorphisms.
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2.14.1 Deciding the Existence of an Equivariant Embedding in
Linear Time

In Step 7, the existence of an equivariant embedding is decided by checking whether a
given τ -tuple can be brought into one of the forms listed in Section 2.8.4 by the action of
the mapping class group. Computing the complete orbit of a τ -tuple in the exponentially
growing space Bk+2g under the action of the mapping class group is infeasible.

However, the following arguments suggest though that a decision algorithm with run time
linear in the genus and number of singular points exists.

Figure 2.60: The Chinese rings puzzle. Picture from [Wal]. See [Bri] for solution.

Notice that an individual Dehn or half twist in Figure 2.19 operates on at most four con-
secutive entries in the τ -tuple, i.e., all other entries in the τ -tuple are neither affected by
the twist nor influence the outcome of the twist. Furthermore, checking that a τ -tuple is
of one of the forms in Section 2.8.4 can be done independently on groups of at most three
consecutive entries in the τ -tuple. There might be an algorithm that splits the τ -tuple into
such groups and solves the problem group for group in a way similar to solving the Chinese
rings puzzle shown in Figure 2.60. Performing the solution to the Chinese rings puzzle fol-
lows a binary counting scheme and, hence, the time is exponential in the number of rings.
Yet, we can prove that a solution to the Chinese Rings puzzle exists in time linear in the
number of rings. We do this inductively by showing for each ring that we can solve the
part of the puzzle to the right of the ring while bringing the ring from some configuration
to some other configuration. Similarly, even though, the number of necessary Dehn twists
might grow exponentially, we might be able to prove that a sequence of Dehn twists exists.
Unfortunately, I have not had time to work out such an algorithm.
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