Principal Congruence Links for Discriminant $D=-3$

Matthias Goerner

UC Berkeley

April 20th, 2011

Overview

- Thurston congruence link, geometric description
- Bianchi orbifolds, congruence and principal congruence manifolds
- Results implying there are finitely many principal congruence links
- Overview for the case of discriminant $D=-3$
- Preliminaries for the construction
- Construction of two more examples
- Open questions

Thurston congruence link

- Complement is non-compact finite-volume hyperbolic 3-manifold.
- Tesselated by 28 regular ideal hyperbolic tetrahedra.
- Tesselation is "regular", i.e., symmetry group takes every tetrahedron to every other tetrahedron in all possible 12 orientations.

Cusped hyperbolic 3-manifolds

- Ideal hyperbolic tetrahedron does not include the vertices.
- Remove a small hororball. Ideal tetrahedron is topologically a truncated tetrahedron.
- Cut is a triangle with a Euclidean structure from hororsphere.

Cusped hyperbolic 3-manifolds have toroidal ends

- Truncated tetrahedra form interior of a 3-manifold \bar{M} with boundary.
- $\partial \bar{M}$ triangulated by the Euclidean triangles.
- $\partial \bar{M}$ is a torus.
- Ends (cusps) of hyperbolic manifold modeled on torus \times interval.

Knot complements can be cusped hyperbolic 3-manifolds

- Cusp homeomorphic to a tubular neighborhood of a knot/link component.
- Figure-8 knot complement tesselated by two regular ideal tetrahedra.
- Hyperbolic metric near knot so dense that light never reaches knot.
- Complement still has finite volume.

"Regular tesselations"

(Source: wikipedia)

- Spherical 2-dimensional version of "regular tesselations": Platonic solids.
- Person in a tile cannot tell through intrinsic measurements in what tile he or she is or at what edge he or she is looking at.

Two more examples

54 regular ideal tetrahedra

120 regular ideal tetrahedra

Thurston congruence link and the Klein quartic

- Faces of ideal tetrahedra form immersed hyperbolic surface.
- Filling the punctures yields an algebraic curve in $\mathbb{C} P^{2}$: Klein quartic.
- Orientation-preserving symmetry group of the hyperbolic surface: $\operatorname{PSL}(2,7)$, the unique finite simple group of order 168.
- Thurston/Agol, "Thurston congruence link"

Bianchi orbifolds

- \mathcal{O}_{D} : ring of integers in $\mathbb{Q}(\sqrt{D}) . ~ D<0, D \equiv 0,1(4)$ discriminant.
- Bianchi group:
$\operatorname{PGL}\left(2, \mathcal{O}_{D}\right)$ respectively $\operatorname{PSL}\left(2, \mathcal{O}_{D}\right)$
is a discrete subgroup of $\operatorname{PGL}(2, \mathbb{C}) \cong \operatorname{PSL}(2, \mathbb{C}) \cong \operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)$.
- Bianchi orbifold:

$$
M_{1}^{D}=\frac{\mathbb{H}^{3}}{\operatorname{PGL}\left(2, \mathcal{O}_{D}\right)} \quad \text { respectively } \quad \frac{\mathbb{H}^{3}}{\operatorname{PSL}\left(2, \mathcal{O}_{D}\right)}
$$

- Every cusped arithmetic hyperbolic manifold is commensurable with a Bianchi orbifold.

Bianchi orbifolds

$$
\mathrm{M}_{1}^{-3}
$$

regular ideal tetrahedron divided by
orientation-preserving symmetries

M_{1}^{-4}
regular ideal octahedron divided by orientation-preserving symmetries

Congruence subgroups

- Fix ideal I in \mathcal{O}_{D}.
- $\mathcal{O}_{D} \rightarrow \mathcal{O}_{D} / I$ induces map

$$
p: \operatorname{PGL}\left(2, \mathcal{O}_{D}\right) \rightarrow \operatorname{PGL}\left(2, \mathcal{O}_{D} / \iota\right)
$$

- Congruence subgroup:

$$
p^{-1}(G) \text { for some subgroup } G \subset \operatorname{PGL}\left(2, \mathcal{O}_{D} / I\right)
$$

- Principal congruence subgroup:

$$
\operatorname{ker}(p)=p^{-1}(0)
$$

- (Principal) congruence manifold/orbifold: quotient of \mathbb{H}^{3}

$$
\mathrm{M}_{z}^{D}=\frac{\mathbb{H}^{3}}{\operatorname{ker}\left(\operatorname{PGL}\left(2, \mathcal{O}_{D}\right) \rightarrow \operatorname{PGL}\left(2, \frac{\mathcal{O}_{D}}{\langle z\rangle}\right)\right)}
$$

- Thurston congruence link complement is $\mathrm{M}_{2+\zeta}^{-3}$.

Cuspidal Cohomology, Baker's links

- Cuspidal cohomology yields an obstruction:

If M_{1}^{D} can be covered by a link complement, then $D \in \mathcal{L}$ where $\mathcal{L}=$
$\{-3,-4,-7,-8,-11,-15,-19,-20,-23,-24,-31,-39,-47,-71\}$.

- Mark Baker constructed "some" cover for each $D \in \mathcal{L}$, making it 'iff'.
- His covers are neither canonical nor regular.

Finitely many principal congruence links

- Gromov and Thurston 2π-Theorem: Dehn filling cusps of a hyperbolic manifold along peripheral curves with length $>2 \pi$ yields hyperbolic manifold again.
(Length measured on embedded hororballs)
- Agol and Lackenby: improved bound to >6.
- Corollary: If the shortest curve on every cusp has length >6, the manifold is not a link complement.
- Hence, only finitely many principal congruence manifolds M_{z}^{D} are link complements.

The case of discriminant $D=-3$

$$
\begin{aligned}
& \mathrm{M}_{z}^{-3}=\frac{\mathbb{H}^{3}}{\operatorname{ker}\left(\operatorname{PGL}(2, \mathbb{Z}[\zeta]) \rightarrow \operatorname{PGL}\left(2, \frac{Z[\zeta]}{\langle z\rangle}\right)\right)} \\
& \text { with } \zeta=e^{2 \pi i / 3}
\end{aligned}
$$

The case of discriminant $D=-3$

$$
\begin{aligned}
& \mathrm{N}_{z}^{-3}=\frac{\mathbb{H}^{3}}{\operatorname{ker}\left(\operatorname{PSL}(2, \mathbb{Z}[\zeta]) \rightarrow \operatorname{PSL}\left(2, \frac{\mathbb{Z}[\zeta]}{\langle z\rangle}\right)\right)} \\
& \text { with } \zeta=e^{2 \pi i / 3}
\end{aligned}
$$

different from PGL
O same as PGL
$\stackrel{\downarrow}{ } \times$
found link/orbifold diagram in S^{3}
proved that not a link in S^{3}
$\mathbb{R} P^{3}$ showed that link in $\mathbb{R} P^{3}$

The case of discriminant $D=-3$

z-universal regular cover $\widehat{\mathrm{N}}_{z}^{-3}$
with $\zeta=e^{2 \pi i / 3}$

:
different from PSL
same as PSL
infinite
\checkmark found link/orbifold diagram in S^{3}
X proved that not a link in S^{3}
$\mathbb{R} P^{3}$ showed that link in $\mathbb{R} P^{3}$

Preliminaries: Orbifolds

- 3-orbifold M locally modeled on quotient

$$
\frac{\mathbb{R}^{3}}{\Gamma} \rightarrow U \subset M
$$

by a finite subgroup $\Gamma \subset \mathrm{SO}(3, \mathbb{R})$.

- Here, 3-orbifolds M are oriented.
- Underlying topological space $X(M)$ is a 3-manifold.
- Singular locus $\Sigma(M)$ is the set where Γ is non-trivial. $\Sigma(M)$ is embedded trivalent graph with labeled edges.
- Near edges of $\Sigma(M)$: modeled on branched cover, Γ cyclic.
- Near vertices of $\Sigma(M)$: Γ is dihedral or orientation-preserving symmetries of a Platonic solid.

Orbifold notation

Construction of M_{3}^{-3}

- M_{3}^{-3} has 54 regular ideal tetrahedra and 12 cusps.
- The orientation-preserving symmetries are PGL $\left(2, \frac{\mathbb{Z}[\zeta]}{\langle 3\rangle}\right)$
- Lemma: $\mathrm{M}_{3}^{-3} \rightarrow \mathrm{M}_{1+\zeta}^{-3}$ is the universal abelian cover of $\mathrm{M}_{1+\zeta}^{-3}$.
- Lemma: The holonomy of this cover is given by

$$
\pi_{1}^{o r b}\left(\mathrm{M}_{1+\zeta}^{-3}\right) \rightarrow\left(\frac{\mathbb{Z}}{3}\right)^{3}
$$

Reason: $\langle 3\rangle=\langle 1+\zeta\rangle^{2}$ and $\frac{\mathbb{Z}[\zeta]}{\langle 1+\zeta\rangle} \cong \mathbb{Z} / 3$.

Overview of construction of M_{3}^{-3}

Step 1 of M_{3}^{-3} : 3 -cyclic cover along unknot

Step 2 of M_{3}^{-3} : 3-cyclic cover of (3, 3, 3)-triangle orbifold

$$
\tilde{\mathrm{M}}_{1+\zeta}^{H}
$$

$$
\downarrow
$$

$\widetilde{\mathrm{M}}_{1+\zeta}^{\mathrm{I}}$

Step 3 of M_{3}^{-3} : Divide out 3-cyclic symmetry

- The singular locus is too complicated to construct a 3-cyclic cover.
- Divide out 3-cyclic symmetry.

Step 4 of M_{3}^{-3} : 3-cyclic cover of (3,3,3)-triangle orbifold

Step 5 of M_{3}^{-3} : Cover according to Akbulut and Kirby

- Akbulut and Kirby, "Branched Covers of Surfaces in 4-Manifolds": Construction of cyclic cover of B^{4} branched over Seifert surface of a link in $S^{3}=\partial B^{4}$ pushed into B^{4}.
- Here, we are only interested in what happens on the boundary S^{3}.
- The Seifert surface will determine the holonomy of the cyclic cover branched over a link in S^{3}.

Example of a cyclic cover

Step 5 of M_{3}^{-3} : Cover according to Akubulut and Kirby

Rolfsen twists

(Source: Rolfsen, Knots and Links)

Step 5 of M_{3}^{-3} : Rolfsen twists and blow-downs

Dihedral symmetry of link for M_{3}^{-3}

$$
\mathrm{M}_{3}^{-3}
$$

Construction of $\mathrm{M}_{2+2 \zeta}^{-3}$

- $\mathrm{M}_{2+2 \zeta}^{-3}$ has 120 regular ideal tetrahedra and 20 cusps.
- Orientation-preserving symmetries are

$$
\begin{aligned}
\left.\operatorname{PGL}\left(2, \frac{\mathbb{Z}[\zeta]}{\langle 2+2 \zeta\rangle}\right)\right) & \cong \operatorname{PGL}\left(2, \frac{\mathbb{Z}[\zeta]}{\langle 1+\zeta\rangle}\right) \oplus \operatorname{PGL}\left(2, \frac{\mathbb{Z}[\zeta]}{\langle 2\rangle}\right) \\
& \cong S_{4} \oplus A_{5}
\end{aligned}
$$

- For $G \subset S_{4} \oplus A_{5}$, let

$$
|G|=\frac{\mathrm{M}_{2+2 \zeta}^{-3}}{G}
$$

Construction of $\mathrm{M}_{2+2 \zeta}^{-3}$

- Orbifold M_{2}^{-3} and manifold double-cover in:

Dunfield, Thurston, "The virtual Haken conjecture: experiments and examples"

- Decktransformation group of

$$
\mathrm{M}_{2+2 \zeta}^{-3} \cong|0| \rightarrow\left|S_{4} \oplus 0\right| \cong \mathrm{M}_{2}^{-3}
$$

is S_{4}, a solvable group.

- S_{4} and $\mathbb{Z} / 5 \subset A_{5}$ commute in $S_{4} \oplus A_{5}$.

Can divide 5-cyclic symmetry and postpone 5-cyclic cover until later.

Overview of the construction of $\mathrm{M}_{2+2 \zeta}^{-3}$

Pentacle

Pentacle orbifold $=\frac{\text { Minimally twisted 5-component chain link }}{\text { involution around dotted }}$

Tricks for $\mathrm{M}_{2+2 \zeta}^{-3}$

- Blow-up makes 5-cyclic symmetry of chain link visible.
- Rolfsen twists produce surgery unknots with coefficients $\frac{a}{b}$ with $p \mid b$. These unknots serve as branching locus for Akbulut and Kirby construction.
- Reduce rational plumbing diagrams to single surgery unknot revealing lens space structure.
- Projection onto torus for visualization.
$\mathrm{M}_{2+2 \zeta}^{-3}$ in $\mathbb{R} P^{3}$

$\mathrm{M}_{2+2 \zeta}^{-3}$ in S^{3}

Progress on the missing links

$z=3+\zeta, 3+2 \zeta, 5+\zeta$ is prime.
For $z=3+\zeta$:

- Let $G=\left\{\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)\right\}$.
- Triangulation of $M=\mathbb{H}^{3} / p^{-1}(G)$ (Python script).
- $\mathrm{M}_{3+\zeta}^{-3}$ is unique (as manifold) 13-cyclic cover of M with 14 cusps.
- M obtained by $\frac{14}{3}$ Dehn filling of 10_{65}^{3}.

Open questions

- Find remaining 5 potential principal congruence links, or show manifolds are not link complements.
- Is PGL or PSL more natural?
- Are there infinitely many congruence links?
- Are there infinitely many regular Bianchi orbifold cover links?

Classification of regular Binachi orbifold covers for $D=-3$

Invariant of regular Bianchi orbifold cover: Cusp shape z.
Triangulation by regular tetrahedra induces lattice $\mathbb{Z}[\zeta] \subset \mathbb{C}$ on cusps.
Cusp torus is $\mathbb{C} /\langle z\rangle$ for some $z \in \mathbb{Z}[\zeta]$ determined up to unit.
Fix z. Category of regular Bianchi orbifold covers:

- Finite-volume initial object for

$$
z \in\{2,2+\zeta, 2+2 \zeta, 3,3+\zeta, 3+2 \zeta, 4,4+\zeta\} .
$$

- Terminal object is $\mathrm{M}_{\mathrm{z}}^{-3}$ for

$$
z \in\{2+\zeta, 3+\zeta\} .
$$

For the lower z, we have already seen all regular Bianchi orbifold covers.

