
Solutions to Problem 5 from Section 11.4

February 20, 2012

Problem 0.1. Let K be a sequentially compact subset of Rn and suppose
that O is an open subset of Rn that contains K. Prove that there is some
positive number r such that for any point u in K, Br(u) ⊆ O.

Remark 0.2. Notice the order of the quantifiers, “there is ... such that for
any ...”. If you switch them to “for any point u in K, there is some positive
number r such that Br(u) ⊆ O”, the problem becomes trivial because every
point u in K is in O and, hence, the property follows by the definition of O
being open (Definition in 10.3).

1 Solution 1

1.1 Solution Idea

Notice that O is open, so for every u there is a positive number r with
Br(u) ⊆ O. In other words, this r exists pointwise, but we ask for a uniform
r, i.e., one that works on all of K. If there is no such positive r, then there
must be a sequence of points {uk} in K and radii {rk} such that the sequence
of balls Brk(uk) is not contained in O and rk converging to zero. But K is
sequentially compact, so {uk} has a subsequence convering to a point u in
K. At that point, no open ball Br will be contained in O. A contradiction
to O being open.
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1.2 Solution

Proof of Problem 0.1. If K is empty, every r suffices. So assume K is non-
empty.

Notice that, by the definition of O being open, for every u in K, there is
such a positive number r. If no such number r working for all points in K
simultaneously exists, then there must be a sequence of {rk} converging to
zero such that for each rk there is a point uk in K such that the ball Brk(uk)
is not contained in O. You can pick for each k such a point and thus get
a sequence {uk}. Furthermore, there is a point vk in Brk(uk) not in O, i.e.,
there is a sequence of points {vk} not in O such that d(uk,vk) < rk.

Because K is sequentially compact, there is a subsequence {uki} of {uk}
that is converging to a point u in K. At u, there is a positive r such that
Br(u) ⊆ O because O is open. Pick the corresponding subsequence {vki} and
notice that as d(uk,vk) < rk → 0, the subsequence converges to u. Hence,
there is some vki with d(u,vki) < r, so it is in Br(u) ⊆ O. But that is a
contradiction because we picked vk not to be in O.

2 Solution 2

2.1 Solution Idea

Consider the function f : K → R that assigns to a point u in K the largest r
such that Br(u) ⊆ O. Intuitively speaking, if O were a “sane” open set, f(u)
is the distance of u to the boundary bdO of O. The problem now translates
to: There is some positive number r such that f(u) ≥ r for all u in K.

f is a continuous function because if you move u a bit, the distance to the
boundary cannot change by too much either. Even stronger, f is a Lipschitz
mapping (Definition in 12.2) with Lipschitz constant 1 because if you move
u by a little amount ∆, then the distance to the boundary cannot change by
more than |∆|. Because f is continuous and K is compact, the image f(K)
is also compact, and being a compact subset of R, it attains its minimum.
Because O is open, f is nowhere zero. Hence, the minimum of f cannot be
zero, but must be a positive number r which will fulfill the conditions of the
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problem.

2.2 Solution

Definition 2.1. Let O be an open subset of Rn such that O 6= Rn. Let
f : O → R be defined by sending a point u in O to the maximal r such that
Br(u) ⊆ O.

Lemma 2.2. f is well-defined and everywhere positive.

Proof. Fix u in O. We need to show that there is such a maximal r. Consider
the set M ⊆ R of all r such that Br(u) ⊆ O.
First, notice that O is open, so there is some positive r with Br(u) ⊆ O.
Hence, M contains at least one positive number and is non-empty.
Notice that O 6= Rn, so there is a point v not in O. For any r > d(u, v), we
have Br(u) 6⊆ O. Hence, M is bounded by d(u,v).
Furthermore, an increasing sequence {rk} of numbers in M yields a sequence
of balls

{
Brk

}
and, because each is contained in O, so is there union which

is a ball Br with r being the limit of {rk}.
Hence, M contains its maximum. And M contains a positive number, so
f(u) > 0.

Lemma 2.3. f is a Lipschitz mapping with Lipschitz constant 1 (Definition
in 12.2).

Proof. Let u,v be points in O. Let Br(u) with r = f(u) be the largest ball
around u.
If v is in Br(u), then d(u,v) < v and Br−d(u,v)(v) is a subset of Br(u) by
the triangle inequality, and hence a subset of O. So, f(v) ≥ r − d(u,v) =
f(u)− d(u,v), so

f(u)− f(v) ≤ d(u,v)

.
If v is not in Br(u), then d(u,v) ≥ r = f(u). Since f(v) is positive, we
again have

f(u)− f(v) ≤ d(u,v).
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Interchanging u and v in the argument, we get −(f(u)− f(v)) ≤ d(u,v), so

|f(u)− f(v)| ≤ d(u,v).

Lemma 2.4. If f is a Lipschitz mapping with Lipschitz constant C, then f
is continuous.

Proof. Pick a point u and a real number ε > 0. Now, pick δ = ε/C. For any
point v with d(u,v) < δ, we have |f(v)− f(u)| ≤ Cd(u,v) < Cδ = Cε/C =
ε.

Lemma 2.5. If M ⊆ R is non-empty, sequentially compact and only contains
positive numbers, then it has a minimum r in M and r > 0.

Proof. Sequentially compact (Theorem 11.18) implies bounded and closed.
Pick a sequence converging to the infimum of M . Because M is closed, the
limit is contained in M and will be the minimum r of M . Because r is in M ,
it is a positive number.

Proof of Problem 0.1. If O = Rn or K is empty, any positive r will suffice.
So let’s assume O 6= Rn and K 6= ∅.

By Lemma 2.3 and 2.4, f is continuous. The image f(K) is sequentially
compact because K is sequentially compact (Theorem 11.20). By Lemma
2.2, f(K) is non-empty and contains only positive numbers. By Lemma 2.5,
M has a minimum r. So for every u in K, f(u) ≥ r, and hence the ball
Br(u) is contained in O.
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